Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-25T15:34:27.987Z Has data issue: false hasContentIssue false

Implications of Interface Structure on the Elastic Properties of Metallic Multilayers-The Case of the Supermodulus Effect

Published online by Cambridge University Press:  15 February 2011

Alan F. Jankowski*
Affiliation:
Lawrence Livermore National Laboratory, Chemistry & Materials Science, Materials Division, P.O. Box 808, Livermore, California 94550
Get access

Abstract

The existence of the supermodulus effect, an enhancement in the elastic modulus of artificially layered metal films, was discovered more than a dozen years ago. Yet the detailed nature of this effect remains a puzzling phenomena. Implications of the interface structure on the elastic properties of gold-nickel multilayers are investigated using x-ray diffraction and high resolution electron microscopy.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Yang, Y.M.C., Tsakalakos, T. and Hilliard, J.E., J. Appl. Phys. 48 (1977) 876.Google Scholar
2. Jankowski, A.F., J. Phys. Chem. Solids 50 (1989) 641 Google Scholar
3. Tsakalakos, T. and Khachaturyan, A., Mater. Sci. Eng'g. B 6 (1990) 123.Google Scholar
4. Jankowski, A.F., Superlattices and Microstructures 6 (1989) 427.Google Scholar
5. Wall, M.A. and Jankowski, A.F., Thin Solid Films 181 (1989) 313.Google Scholar
6. Nutt, S.R., Green, K.A., Baker, S.P., Nix, W.D. and Jankowski, A.F., Mater. Res. Soc. Symp. Proc. 130 (1989) 129.Google Scholar
7. Chaudhuri, J., Gondhalekar, V. and Jankowski, A.F., Mater. Res. Soc. Symp. Proc. 208 (1991) in press.Google Scholar
8. Henein, G.E. and Hilliard, J.E., J. Appl. Phys. 54 (1983) 728.CrossRefGoogle Scholar
9. Takagi, S., Acta. Cryst. 15 (1962) 1311.Google Scholar
10. Taupin, D., Bull. Soc. Fran. Miner. Cryst. 87 (1964) 469.Google Scholar
11. Newcomb, S.B., Boothroyd, C.B. and Stobbs, W.M., J. Micros. 140 (2) (1985) 195.Google Scholar
12. Scherzer, O., J. Appl. Phys. 20 (1949) 20.Google Scholar
13. Jankowski, A.F., Mater. Sci. Eng'g. A 114 (1989) L17.Google Scholar
14. Gyorgy, E.M., McWhan, D.B., Dillion, J.F. Jr., Walker, L.R. and Waszczak, J.V., Phys. Rev. B 25 (1982) 6739.Google Scholar
15. Mitura, Z. and Mikolajczak, P., J. Phys. F. 18 (1988) 183.Google Scholar
16. Steams, M.B., Lee, C.H. and Groy, T.L., Phys. Rev. B 40 (1989) 8256.Google Scholar
17. Jankowski, A.F., J. Phys. F. 18 (1988) 413.Google Scholar
18. Baxter, C.S. and Stobbs, W.M., Nature 322 (1986) 814.Google Scholar
19. Jankowski, A.F. and Tsakalakos, T., J. Phys. F. 15 (1985) 1279.Google Scholar
20. Dodson, B.W., Phys. Rev. B 37 (1988) 727.Google Scholar
21. Wolf, D. and Lutsko, J.F., Phys. Rev. Lett. 60 (1988) 1170.Google Scholar
22. Jankowski, A.F. and Tsakalakos, T., Mater. Sci. Eng'g. B 6 (1990) 87.Google Scholar