Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-27T01:55:47.066Z Has data issue: false hasContentIssue false

Implications for Ultrafast Reflection Electron Diffraction from Temporal and Spatial Evolution of Transient Electric Fields

Published online by Cambridge University Press:  31 January 2011

Hyuk Park
Affiliation:
[email protected], University of Illinois, Materials Science and Engineering, Urbana, Illinois, United States
J.M. Zuo
Affiliation:
[email protected], University of Illinois, Materials Science and Engineering and Materials Research Laboratory, Urbana, Illinois, United States
Get access

Abstract

Understanding interaction of ultrafast pulsed laser with matter is critical for probing ultrafast processes in materials science, understanding the physics of laser ablation and the laser induced non-equilibrium carrier dynamics in metals and semiconductors, including plasmonics. When an intense laser pulse of femtoseconds (fs) in duration hits the surface of a targeted matter, it excites a hot electron gas. Part of the hot electrons is emitted from the surface in a way similar to thermionic emission. Electrons can also be emitted through multiphoton photoemission (MPPE) or thermally assisted MPPE. The emitted electrons travel at speeds that create transient electric fields (TEFs). To detect TEFs and study the dynamics of emitted electrons, we have developed a time resolved electron beam imaging technique that allows us to measure TEFs above a sample surface at picoseconds time resolution. We have also developed a model of the TEFs based on the propagation of emitted electrons and the percentage of electrons escaping from the surface. We examine the significance of TEFs for ultrafast reflection electron diffraction by examining anomalous effects in ultrafast reflection high energy electron diffraction (RHEED) of silicon surfaces.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Ichimiya, A. Cohen, P. I. Reflection High-Energy Electron Diffraction, (Cambridge University Press, 2004).Google Scholar
[2] Mourou, G. Williamson, S. Applied Physics Letters 41, 44 (1982).Google Scholar
[3] Williamson, S. Mourou, G. Li, J. C. M. Physical Review Letters 52, 2364 (1984).Google Scholar
[4] Cao, J. Hao, Z. Park, H. Tao, C. Kau, D. Blaszczyk, L. Applied Physics Letters 83, 1044 (2003).Google Scholar
[5] Siwick, B. J. Dwyer, J. R. Jordan, R. E. Miller, R. J. D. Journal of Applied Physics 92, 1643 (2002).Google Scholar
[6] Siwick, B. J. Dwyer, J. R. Jordan, R. E. Miller, R. J. D. Science 302, 1382 (2003).Google Scholar
[7] Dwyer, J. R. Hebeisen, C. T. Ernstorfer, R. Harb, M. Deyirmenjian, V. B. Jordan, R. E. Miller, R. J. D. Philosophical Transactions of the Royal Society a-Mathematical Physical and Engineering Sciences 364, 741 (2006).Google Scholar
[8] Cao, J. Ihee, H. Zewail, A. H. Proc. Natl. Acad. Sci. USA 96, 338 (1999).Google Scholar
[9] Ihee, H. Lobastov, V. A. Gomez, U. M. Goodson, B. M. Srinivasan, R. Ruan, C. Y. Zewail, A. H. Science 291, 458 (2001).Google Scholar
[10] Elsayedali, H. E. Mourou, G. A. Applied Physics Letters 52, 103 (1988).Google Scholar
[11] Ruan, C. Y. Lobastov, V. A. Vigliotti, F. Chen, S. Y. Zewail, A. H. Science 304, 80 (2004).Google Scholar
[12] Ruan, C. Y. Vigliotti, F. Lobastov, V. A. Chen, S. Y. Zewail, A. H. Proceedings of the National Academy of Sciences of the United States of America 101, 1123 (2004).Google Scholar
[13] Ruan, C. Y. Yang, D. S. Zewail, A. H. Journal of the American Chemical Society 126, 12797 (2004).Google Scholar
[14] Yang, D. S. Lao, C. S. Zewail, A. H. Science 321, 1660 (2008).Google Scholar
[15] Murdick, R. A. Raman, R. K. Murooka, Y. Ruan, C. Y. Physical Review B77, 245329 (2008).Google Scholar
[16] Park, H. Zuo, J. M. Applied Physics Letters 94, 251103 (2009).Google Scholar
[17] Vigliotti, F. Chen, S. Y. Ruan, C. Y. Lobastov, V. A. Zewail, A. H. Angewandte Chemie-International Edition 43, 2705 (2004).Google Scholar
[18] Raman, R. K. Murooka, Y. Ruan, C. Y. Yang, T. Berber, S. Tomanek, D. Physical Review Letters 101, 077401 (2008).Google Scholar
[19] Carbone, F. Baum, P. Rudolf, P. Zewail, A. H. Physical Review Letters 100, 035501 (2008).Google Scholar
[20] Fujimoto, J. G. Liu, J. M. Ippen, E. P. Bloembergen, N. Physical Review Letters 53, 1837 (1984).Google Scholar
[21] Riffe, D. M. Wang, X. Y. Downer, M. C. Fisher, D. L. Tajima, T. Erskine, J. L. More, R. M. Journal of the Optical Society of America B-Optical Physics 10, 1424 (1993).Google Scholar
[22] Helliwell, J. R. Rentzepis, P. M. Time-resolved Diffraction, (Oxford Science Publications, Oxford, UK, 1998).Google Scholar