Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-25T15:39:38.391Z Has data issue: false hasContentIssue false

Impedance and Mott-Schottky Analysis of a Pr0.15Ce0.85O2-x Solid Solution

Published online by Cambridge University Press:  11 February 2011

R. Bouchet
Affiliation:
MADIREL, Université de Provence-CNRS (UMR 6121), Centre Saint-Jérôme, F-13397 Marseille Cedex 20, France
P. Knauth
Affiliation:
MADIREL, Université de Provence-CNRS (UMR 6121), Centre Saint-Jérôme, F-13397 Marseille Cedex 20, France
T. Stefanik
Affiliation:
Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA-02139, USA
H. L. Tuller
Affiliation:
Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA-02139, USA
Get access

Abstract

The semiconductor properties of a praseodymium-cerium oxide solid solution with composition Pr0.15Ce0.85O2-x (PCO) were investigated by d.c. current-voltage and bias-dependent impedance measurements in aqueous solution. The solution data were compared with impedance values of dry cells in air. A Mott-Schottky analysis of the PCO-solution interface capacitance showed p-type semi conductivity, a flat-band potential Efb = (2.0 ± 0.1) V/NHE and an ionized acceptor density NA = 3 10 cm-3. Using these data, an electron hole mobility μh ∼ 10-5 cm2 V-1 s-1 was calculated pointing to a small polaron conduction mechanism with a hopping energy (Eh = 0.4 eV).

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Yao, H. C., Yao, Yu, J. Catal., 86, 254 (1984).Google Scholar
2 Logan, D., Shelef, M., J. Mater. Res., 9, 468 (1994).Google Scholar
3 Porat, O., Tuller, H. L., Lavik, E. B., Chiang, Y.-M., in Nanophase and Nanocomposite Materials II, Komarneni, S., Parker, J., Wollenberger, H., eds., Materials Research Society, Pittsburgh, 99 (1997).Google Scholar
4 Knauth, P., Tuller, H. L., in Electrochemistry of Glass and Ceramics, Sundaram, S. K., Bickford, D. F., Hornyak, E. J., eds., American Ceramic Society, Westerville, 15 (1999).Google Scholar
5 Knauth, P., Tuller, H. L., J. Europ. Ceram. Soc., 19, 831 (1999).Google Scholar
6 Stefanik, T., Tuller, H. L., in Solid State Ionics 2002, Knauth, P., Tarascon, J.-M., Traversa, E., Tuller, H. L., eds., Materials Research Society, in press.Google Scholar
7 Porat, O., Tuller, H. L., Shelef, M., Logothetis, E. M., in Solid State Chemistry of Inorganic Materials, Davies, P. K., Jacobson, A. J., Torardi, C. C., Vanderah, T. A., eds., Materials Research Society, Pittsburgh, 531 (1997).Google Scholar
8 Stefanik, T. and Tuller, H.L., J. Eur. Ceram. Soc., 21, 1967 (2001).Google Scholar
9 Bard, A. J., Faulkner, L. R., Electrochemical Methods – Fundamentals and Applications, J. Wiley, New York (1980).Google Scholar
10 Bard, A. J., Parsons, R., Jordan, J., Standard Potentials in Aqueous Solutions, Marcel Dekker, New York (1985).Google Scholar
11 Lappalainen, J., Kek, D., and Tuller, H. L. in Electrically Based Microstructural Characterization III, Gerhardt, R. A., Washabaugh, A., and Alim, M.A., eds., Materials Research Society, Warrendale, PA, R5.1.1–R5.1.11 (2002).Google Scholar
12 Macdonald, J. R., ed, Impedance Spectroscopy Emphasizing Solid Materials and Systems, John Wiley & Sons, New York (1987)Google Scholar
13 Tuller, H. L. and Nowick, A. S., J. Phys. Chem. Solids, 38, 859 (1977)Google Scholar