Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-27T02:18:01.111Z Has data issue: false hasContentIssue false

Impacts of Temperature and Moisture on the Resistive Switching Characteristics of a Cu-Ta2O5-Based Atomic Switch

Published online by Cambridge University Press:  17 May 2012

Tohru Tsuruoka
Affiliation:
International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), Tsukuba, 305-0044, Japan. Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Chiyoda-ku, 102-0075, Japan.
Tsuyoshi Hasegawa
Affiliation:
International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), Tsukuba, 305-0044, Japan. Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Chiyoda-ku, 102-0075, Japan.
Kazuya Terabe
Affiliation:
International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), Tsukuba, 305-0044, Japan.
Masakazu Aono
Affiliation:
International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), Tsukuba, 305-0044, Japan.
Get access

Abstract

The effects of temperature and moisture on the resistive switching characteristics of oxide-based atomic switches were investigated to reveal their switching mechanism. The observed temperature variations of the SET voltages can be qualitatively explained by the classical nucleation theory. The moisture absorption in oxides results in the formation of a hydrogen-bond network at grain boundaries, and metal ions are likely to migrate along the grain boundaries. Depending on the strength of hydrogen bonds in oxides, the atomic switches exhibit a different switching behavior to ambient conditions.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Waser, R., Aono, M., Nature Mater. 6, 833 (2007).Google Scholar
2. Waser, R., Dittmann, R., Staikov, G., Szot, K., Adv. Mater. 21, 2632 (2009).Google Scholar
3. Terabe, K., Hasegawa, T., Nakayama, T., and Aono, M., Nature 433, 47 (2005).Google Scholar
4. Hasegawa, T., Terabe, K., Sakamoto, T., and Aono, M., MRS Bull. 34, 929 (2009).Google Scholar
5. Sakamoto, T., Lister, K., Banno, N., Hasegawa, T., Terabe, K., Aono, M., Appl. Phys. Lett. 91, 092110 (2007).Google Scholar
6. Schindler, C., Staikov, G., Waser, R., Appl. Phys. Lett. 92, 122910 (2008).Google Scholar
7. Tsuruoka, T., Terabe, K., Hasegawa, T., Aono, M., Nanotechnology 21, 425205 (2010).Google Scholar
8. Tsuruoka, T., Terabe, K., Hasegawa, T., Aono, M., Nanotechnology 22, 254013 (2011).Google Scholar
9. Tsuruoka, T., Terabe, K., Hasegawa, T., Valov, I., Waser, R., and Aono, M., Adv. Mater. 12, 70 (2012).Google Scholar