No CrossRef data available.
Published online by Cambridge University Press: 10 February 2011
Crystalline quality of locally oxidized silicon wafers has been studied. Wafers from different supply sources were found to be differently susceptible to stress-induced dislocation generation, although they had been produced to the same specification. On the basis of the analysis of a depth distribution of the dislocations, critical resolved shear stress of dislocation movement in the bulk areas of the wafers was determined. It varied from about 1.65 to 5.12 MPa and correlated positively to the surface defect density. The results show that uncontrollable variations of bulk silicon properties may significantly influence the stress-induced defect nucleation on the surface of wafers during processing.