Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-20T00:47:22.836Z Has data issue: false hasContentIssue false

Impact of Manganese incorporation on the structural and magnetic properties of MOCVD-grown Ga1−xMnxN

Published online by Cambridge University Press:  01 February 2011

Matthew H. Kane
Affiliation:
Georgia Institute of Technology, School of Electrical and Computer Engineering, Atlanta, GA 30332, U.S.A.*[email protected] Georgia Institute of Technology, School of Materials Science and Engineering, Atlanta, GA 30332, U.S.A.*[email protected]
Ali Asghar
Affiliation:
Georgia Institute of Technology, School of Electrical and Computer Engineering, Atlanta, GA 30332, U.S.A.*[email protected]
Martin Strassburg
Affiliation:
Georgia Institute of Technology, School of Electrical and Computer Engineering, Atlanta, GA 30332, U.S.A.*[email protected] Georgia State University, Department of Physics and Astronomy, Atlanta, GA 30303, U.S.A.*[email protected]
Qing Song
Affiliation:
Georgia Institute of Technology, School of Chemistry and Biochemistry, Atlanta, GA 30332, U.S.A.*[email protected]
Adam M. Payne
Affiliation:
Georgia Institute of Technology, School of Electrical and Computer Engineering, Atlanta, GA 30332, U.S.A.*[email protected]
Christopher J. Summers
Affiliation:
Georgia Institute of Technology, School of Materials Science and Engineering, Atlanta, GA 30332, U.S.A.*[email protected]
Z. John Zhang
Affiliation:
Georgia Institute of Technology, School of Chemistry and Biochemistry, Atlanta, GA 30332, U.S.A.*[email protected]
Nikolaus Dietz
Affiliation:
Georgia State University, Department of Physics and Astronomy, Atlanta, GA 30303, U.S.A.*[email protected]
Ian T. Ferguson
Affiliation:
Georgia Institute of Technology, School of Electrical and Computer Engineering, Atlanta, GA 30332, U.S.A.*[email protected]
Get access

Abstract

This paper reports the impact of the Mn incorporation on the structural and magnetic properties of Ga1−xMnxN on the metal-organic vapor phase deposition (MOCVD). Crystalline quality and phase purity were determined by high-resolution X-ray diffraction and indicated that no macroscopic second phases are formed during growth. Atomic force microscopy revealed a 2-dimensional MOCVD step-flow growth pattern in the Mn-incorporated samples. Various annealing steps were applied to some of the samples to reduce compensating defects and to investigate the effects of post processing on the growth. SQUID measurements showed an apparent ferromagnetic hysteresis behavior. However, none of the requirements for room temperature ferromagnetism in the prevailing mean field DMS theories were found. Therefore, different origins of the ferromagnetic signal are discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Ohno, H., Journal of Crystal Growth 251, 285291 (2003).Google Scholar
[2] Dietl, T., Ohno, H., Matsukura, F., Cibert, J., and Ferrand, D., Science 287, 10191022 (2000).Google Scholar
[3] Kronik, L., Jain, M., and Chelikowsky, J. R., Physical Review B 66, 041203 (2002).Google Scholar
[4] Sato, K., Dederichs, P. H., Katayama-Yoshida, H., and Kudrnovsky, J., Physica B 340–342, 863869 (2003).Google Scholar
[5] Sato, K. and Katayama-Yoshida, H., Semiconductor Science & Technology 17, 367–76 (2002).Google Scholar
[6] Ohno, H., Shen, A., Matsukura, F., Oiwa, A., Endo, A., Katsumoto, S., and Iye, Y., Applied Physics Letters 69, 363365 (1996).Google Scholar
[7] Wojtowicz, T., Lim, W. L., Liu, X., Sasaki, Y., Bindley, U., Dobrowolska, M., Furdyna, J. K., Yu, K. M., and Walukiewicz, W., Journal of Superconductivity 16, 4144 (2003).Google Scholar
[8] Boeck, J. D., Oesterholt, R., Bender, H., Esch, A. V., Bruynseraede, C., Hoof, C. V., and Borghs, G., Journal of Magnetism and Magnetic Materials 156, 148150 (1996).Google Scholar
[9] Shon, Y., Kwon, Y. H., Yuldashev, S. U., Leem, J. H., Park, C. S., Fu, D. J., Kim, H. J., Kang, T. W., and Fan, X. J., Applied Physics Letters 81, 18451847 (2002).Google Scholar
[10] Theodoropoulou, N., Hebard, A. F., Overberg, M. E., Abernathy, C. R., Pearton, S. J., Chu, S. N. G., and Wilson, R. G., Applied Physics Letters 78, 34753477 (2001).Google Scholar
[11] Baik, J. M., Jang, H. W., Kim, J. K., and Lee, J.-L., Applied Physics Letters 82, 583585 (2003).Google Scholar
[12] Thaler, G. T., Frazier, R. M., Stapleton, J., Abernathy, C. R., Pearton, S. J., Kelly, J., Rairigh, R., Hebard, A. F., and Zavada, J. M., Electrochemical and Solid-State Letters 7, G34G36 (2004).Google Scholar
[13] Kane, M. H., Asghar, A., Payne, A. M., Vestal, C. R., Zhang, Z. J., Strassburg, M., Senawirante, J., Dietz, N., Summers, C. J., and Ferguson, I. T., Physica Status Solidi C, Submitted (2004).Google Scholar
[14] Kuroda, S., Bellet-Amalric, E., Biquard, X., Cibert, J., Giraud, R., Marcet, S., and Mariette, H., Physica Status Solidi B 240, 443446 (2003).Google Scholar
[15] Strassburg, M., Senawirante, J., Hums, C., Dietz, N., Kane, M. H., Asghar, A., Payne, A. M., Ferguson, I. T., Summers, C. J., Haboeck, U., Hoffman, A., Azamat, D., and Gelhoff, W., MRS Proceedings, submitted (2004).Google Scholar