Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-26T21:22:44.888Z Has data issue: false hasContentIssue false

Impact of Hydrogen Overpressure on Spent Fuel Alteration Behavior in Salt Brine During a Three-Year Long Corrosion Test

Published online by Cambridge University Press:  17 March 2011

Andreas Loida
Affiliation:
Forschungszentrum Karlsruhe, Institut für Nukleare Entsorgung, P.O. Box 3640 D-76021 Karlsruhe, Germany, [email protected]
Volker Metz
Affiliation:
Forschungszentrum Karlsruhe, Institut für Nukleare Entsorgung, P.O. Box 3640 D-76021 Karlsruhe, Germany
Bernhard Kienzler
Affiliation:
Forschungszentrum Karlsruhe, Institut für Nukleare Entsorgung, P.O. Box 3640 D-76021 Karlsruhe, Germany
Horst Geckeis
Affiliation:
Forschungszentrum Karlsruhe, Institut für Nukleare Entsorgung, P.O. Box 3640 D-76021 Karlsruhe, Germany
Get access

Abstract

The corrosion of the Fe-based spent fuel containing canister produces large amounts of hydrogen, which dominate the composition of the gas phase. To quantify to what extent the hydrogen over- pressure may counteract radiolysis enhanced matrix dissolution, related experimental work has been performed. High burnup spent fuel was corroded in 5 M NaCl solution in different tests: (1) Fe ab-sence (<0.16 bar H2 overpressure), (2) Fe presence (2.8 bar H2 overpressure), (3) Fe absence, external applied H2 overpressure of 3.2 bar. In the absence of Fe, after the application of H2 overpressure the UO2 matrix dissolution rate decreased by a factor of about 10. The concentrations of U, Np, Tc in so- lution were found to be decreasing at least two orders, and ranging within the same level as in the presence of Fe powder. However, Pu and Am concentrations were less affected, due to the absence of Fe powder and the associated high sorption capacity for these radioelements.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Bonin, B., Colin, A., Dutfoy, A., Journal of Nuclear Materials 281, 114 (2000)Google Scholar
2. Spahiu, K., Werme, L., Eklund, U., Radiochimica Acta 88, 507511 (2000)Google Scholar
3. Grambow, B., Loida, A., Dressler, P., Geckeis, H., Gago, J., Casas, I., , I., Pablo, J. de, Gimenez, J., Torrero, M.E., FZKA 5702 (1996)Google Scholar
4. Grambow, B., Loida, A., Martinez-Esparza, A., Diaz-Arocas, P., Pablo, J. de, Paul, J.-L., Marx, G., Glatz, J.-P., Lemmens, K., Ollila, K., Christensen, H., EUR 19140 EN (2000)Google Scholar
5. Grambow, B., Müller, R., Materials Research Society Symposium Proceedings 176, 229, (1990)Google Scholar
6. Neck, V., Kim, J.I., Radiochimica Acta 89, 116 (2001)Google Scholar
7. Neck, V., Altmaier, M., Müller, R., Schlieker, M., Fanghänel, T., Radiochimica Acta (2004) (in press)Google Scholar
8. Kelm, M., personal communication, (2004)Google Scholar