Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-28T23:02:44.428Z Has data issue: false hasContentIssue false

Impact of curing condition on chemical stability of ultralow-k PMO material.

Published online by Cambridge University Press:  30 July 2012

M. B. Krishtab
Affiliation:
IMEC, Leuven, Belgium St. Petersburg Electrotechnical University
L. Zhang
Affiliation:
IMEC, Leuven, Belgium
Q. T. Le
Affiliation:
IMEC, Leuven, Belgium
K. Vanstreels
Affiliation:
IMEC, Leuven, Belgium
L. Souriau
Affiliation:
IMEC, Leuven, Belgium
M. Phillips
Affiliation:
SBA Materials, Inc., Albuquerque
M. R. Baklanov
Affiliation:
IMEC, Leuven, Belgium
Get access

Abstract

In this work a new generation of periodic mesoporous organosilica (PMO) low-k dielectrics with targeted k-values 2.0 and 1.8 is evaluated. In addition, impact of two different curing processes on properties of the mesoporous material is analyzed. It is shown that removal of templating organics with thermal annealing leads to formation of mechanically robust and chemically very stable material, while application of UV-assisted curing with broadband lamp (λ > 200 nm) causes pronounced decrease of film ability to sustain in diluted HF solution. The explanation of that phenomenon is given in terms of silica-ring structures formed within organosilica skeleton.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Maex, K., Baklanov, M. R., Shamiryan, D., Iacopi, F., Brongersma, S. H. and Yanovitskaya, Z. S., J. Appl. Phys. 93, 8793 (2003).Google Scholar
2. Hatton, Benjamin; Landskron, Kai, Whitnall, Wesley, Perovic, Douglas, Ozin, Geoffrey. Acc. Chem. Res 38, 305 (2005).Google Scholar
3. Prager, L., Marsik, P., Wennrich, L., Baklanov, M. R., Naumov, S., Pistol, L., Schneider, D., Gerlach, J., Verdonck, P., and Buchmeiser, M., Microelectron. Eng. 85, 2094 (2008).Google Scholar
4. Ciofi, I., Baklanov, M. R., Tokei, Z., and Beyer, G. P., Microelectronic Eng. 87, 2391 (2010).Google Scholar
5. Baklanov, M. R.; Mogilnikov, K. P.; Polovinkin, V. G.; Dultsev, F. N., J. of Vac. Sc. & Tech. B: Microelectronics and Nanometer Structures 18, 1385 (2000).Google Scholar
6. Godavarthi, S., Le, Q.T., Verdonck, P., Mardani, S., Vanstreels, K., Van Besien, E., Baklanov, M.R., Microelectronic Engineering [in press]Google Scholar
7. Voronkov, M.G., Yuzhelev’skii, Yu.A., and Mileshkevich, V.P., Russian Chemical Reviews 44(4), 355 (1975).Google Scholar
8. Gerber, Th. and Himmel, B., J. Non-Cryst. Solids 83, 324 (1986)Google Scholar
9. Brinker, C.J., Kirkpatrick, R.J., Tallant, D.R., Bunker, B.C., Montez, B., J. Non-Cryst. Solids 99, 418 (1988).Google Scholar
10. O’Keefe, M. and Gibbs, G.V., J. Chem. Phys. 81, 876 (1984)Google Scholar
11. Kim, Yoon-Hae, Hwang, Moo Sung, Kim, Hyeong Joon, Kim, Jin Yong, and Lee, Young, J. Appl. Phys. 90, 3367 (2001)Google Scholar
12. Hench, L L, West, J K, Annu. Rev. Mater. Sci. 25, 37 (1995)Google Scholar