Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-24T17:54:18.177Z Has data issue: false hasContentIssue false

The Impact of Capping on the Mobility and Thermal Stability of Organic Thin Film Transistors

Published online by Cambridge University Press:  26 February 2011

Stephan Meyer
Affiliation:
[email protected], University of Stuttgart, 3. Physics Institute, Pfaffenwaldring 57, Stuttgart, 70550, Germany
Stefan Sellner
Affiliation:
[email protected], Harvard University, Division of Engineering and Applied Sciences, Cambridge, MA, 02138, United States
Frank Schreiber
Affiliation:
[email protected], University of Tübingen, Institute of Applied Physics, Tübingen, 72076, Germany
Helmut Dosch
Affiliation:
[email protected], Max-Planck-Institute, Stuttgart, 70569, Germany
Gerhard Ulbricht
Affiliation:
[email protected], Max-Planck-Institute, Stuttgart, 70569, Germany
Matthias Fischer
Affiliation:
[email protected], University of Stuttgart, 1st Physics Institute, Stuttgart, 70550, Germany
Bruno Gompf
Affiliation:
[email protected], University of Stuttgart, 1st Physics Institute, Stuttgart, 70550, Germany
Jens Pflaum
Affiliation:
[email protected], University of Stuttgart, 3rd Physics Institute, Stuttgart, 70550, Germany
Get access

Abstract

We performed temperature-dependent studies on pentacene thin film transistors (TFTs) with and without encapsulation. The capping layer is realized either by a sputtering layer of aluminum oxide (AlOx.) or, alternatively, by a polymeric layer of poly-para-xylylene (PPX). A field-effect can be demonstrated for both capping materials up to temperatures of about 140 – 170 °C, which is about 50 °C above the desorption point of uncapped pentacene thin films on SiO2 substrates. Complementary studies by thermal desorption spectroscopy and temperature dependent x-ray diffraction show that the organic layer remains crystalline on the substrate far above the electrical breakdown temperature of the encapsulated device.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Ye, R., Baba, M., Suzuki, K., Ohishi, Y., and Mori, K., Thin Solid Films 464, 437 (2004).Google Scholar
2. Käfer, D. and Witte, G., Phys. Chem. Chem. Phys. 15, 2850 (2005).Google Scholar
3. Schreiber, F., Gerstenberger, M. C., Dosch, H., and Scoles, G., Langmuir 19, 10004 (2003).Google Scholar
4. Fenter, P., Schreiber, F., Bulović, V., and Forrest, S. R., Chem. Phys. Lett. 277, 521 (1997).Google Scholar
5. Tsukagoshi, K., Yagi, I., Shigeto, K., Yanagisawa, K., Tanabe, J., and Aoyagi, Y., Appl. Phys. Lett. 87, 183502 (2005).Google Scholar
6. Sellner, S., Gerlach, A., Schreiber, F., Kelsch, M., Kasper, N., Dosch, H., Meyer, S., Pflaum, J., Fischer, M., and Gompf, B., Adv. Mater. 16, 1750 (2004).Google Scholar
7. Sellner, S., Gerlach, A., Schreiber, F., Kelsch, M., Kasper, N., Dosch, H., Meyer, S., Pflaum, J., Fischer, M., Gompf, B., and Ulbricht, G., J. Mater. Res. 21, 455 (2006).Google Scholar
8. Schreiber, F., phys. stat. sol. (a) 201, 1037 (2004).Google Scholar
9. Beernink, G., Strunskus, T., Witte, G., and Wöll, C., Appl. Phys. Lett. 85, 398 (2004).Google Scholar
10. Sekitani, T., Someya, T., and Sakurai, T., J. Appl. Phys. 100, 024513 (2006).Google Scholar
11. Sekitani, T., Iba, S., Kato, Y., and Someya, T., Appl. Phys. Lett. 85, 3902 (2004).Google Scholar
12. Dürr, A. C., Schreiber, F., Kelsch, M., Carstanjen, H. D., and Dosch, H., Adv. Mater. 14, 961 (2002).Google Scholar