Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-17T16:08:44.855Z Has data issue: false hasContentIssue false

Impact Ionization, Degradation, and Breakdown in SiO2

Published online by Cambridge University Press:  22 February 2011

D. J. Dimaria
Affiliation:
IBM Research Division, T.J. Watson Research Center, Yorktown Heights, N.Y. 10598
E. Cartier
Affiliation:
IBM Research Division, T.J. Watson Research Center, Yorktown Heights, N.Y. 10598
D. Arnold*
Affiliation:
IBM Research Division, T.J. Watson Research Center, Yorktown Heights, N.Y. 10598
*
* University of Illinois at Chicago, Department of Electrical Engineering and Computer Science, 1136 Science and Engineering Offices, Box 4348, Chicago, IL 60680.
Get access

Abstract

Destructive breakdown in silicon dioxide is shown to be strongly correlated to the oxide degradation caused by hot-electron-induced defect production and charge trapping ner the interfaces of the films. Two well defined transitions in the chargc-to-breakdown data as a function of field and oxide thickness are shown to coincide with the onset of mechanisms due to trap creation and impact ionization by electrons with energies exceeding 2 and 9 eV (the SiO2 bandgap energy), respectively. The temperature dependence of charge-to-breakdown is also shown to be consistent with that of these two defect-producing mechanisms.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Solomon, P. and Klein, N., Solid State Commun. 17, 1397 (1975).Google Scholar
2. DiStefano, T.H. and Shatzkes, M., J. Vac. Sci. Technol. 13, 50 (1976).Google Scholar
3. Shatzkes, M. and Av-Ron, M., J. Appl. Phys. 47, 3192 (1976).Google Scholar
4. Solomon, P., J. Vac. Sci. Technol. 14, 1122 (1977), and references contained therein.Google Scholar
5. DiMaria, D.J., Theis, T.N., Kirtley, J.R., Pesavento, F.L., Dong, D.W., and Brorson, S.D., J. Appl. Phys. 57, 1214 (1985).Google Scholar
6. Brorson, S.D., DiMaria, D.J., Fischetti, M.V., Pesavento, F.L., Solomon, P.M., and Dong, D.W., J. Appl. Phys. 58, 1302 (1985).Google Scholar
7. Fischetti, M.V., DiMaria, D.J., Brorson, S.D., Theis, T.N., and Kirtley, J.R., Phys. Rev. B 31, 8124 (1985).Google Scholar
8. Harari, E., Appl. Phys. Lett. 30, 601 (1977).Google Scholar
9. DiMaria, D.J., Appl. Phys. Lett. 51, 655 (1987).Google Scholar
10. DiMaria, D.J. and Stasiak, J.W., J. Appl. Phys. 65, 2342 (1989).Google Scholar
11. DiMaria, D.J., J. Appl. Phys. 68, 5234 (1990).Google Scholar
12. DiMaria, D.J. and Stathis, J.H., J. Appl. Phys. 70, 1500 (1991).Google Scholar
13. DiMaria, D.J., in Insulating Films on Semiconductors 1991, edited by Eccleston, W. and Uren, M. (Adam Hilgcr, New York, 1991), pp. 6572, and references contained therein.Google Scholar
14. Heyns, M.M., Krishna Rao, D., and Dekeersmaccker, R.F., Appl. Surf. Sci. 39, 327 (1989).Google Scholar
15. Schwerin, A.v. and Heyns, M.M., in Insulating Films on Semiconductors 1991, edited by Eccleston, W. and Uren, M. (Adam Hilger, New York, 1991), pp. 263266.Google Scholar
16. Buchanan, D.A., Appl. Phys. Lett. 60, 216 (1992).Google Scholar
17. Schwerin, A.v., Heyns, M.M., and Weber, W., J. Appl. Phys. 67, 7595 (1990).Google Scholar
18. Nishida, T. and Thompson, S.E., J. Appl. Phys. 69, 3986 (1991).Google Scholar
19. Buchanan, D.A. and DiMaria, D.J., J. Appl. Phys. 67, 7439 (1990).Google Scholar
20. Nissan-Cohen, Y. and Gorczyca, T., IEEE Electron Dcv. Lett. EDL-9, 287 (1988).Google Scholar
21. DiMaria, D.J., Arnold, D., Cartier, E., Appl. Phys. Lett. 60, 2119 (1992).Google Scholar
22. Arnold, D., Cartier, E., and DiMaria, D.J., Phys. Rev. B 45, 1447 (1992).Google Scholar
23. Lai, S.K., J. Appl. Phys. 54, 2540 (1983).Google Scholar
24. Cartier, E. and McFeely, F.R., Phys. Rev. B 44, 10689 (1991).Google Scholar
25. DiMaria, D.J., Dong, D.W., Falcony, C., Theis, T.N., Kirtley, J.R., Tsang, J.C., Young, D.R., and Pesavento, F.L., J. Appl. Phys. 54, 5801 (1983).Google Scholar
26. Chang, C., Hu, C., and Brodersen, R.W., J. Appl. Phys. 57, 302 (1985).Google Scholar
27. Weinberg, Z.A. and Fischetti, M.V., J. Appl. Phys. 57, 443 (1985).Google Scholar
28. Chen, I.C., Holland, S., Young, K.K., and Hu, C., Appl. Phys. Lett. 49, 669 (1986).Google Scholar
29. Weinberg, Z.A., Fischetti, M.V., and Nissan-Cohen, Y., J. Appl. Phys. 59, 824 (1986).Google Scholar
30. Nissan-Cohen, Y., Shappir, J., and Frohman-Bentchkowsky, D., J. Appl. Phys. 57, 2830 (1985).Google Scholar
31. Fazan, P., Dutoit, M., Martin, C., and Ilcgems, M., Solid-State Electronics 30, 829 (1987).Google Scholar
32. DiMaria, D.J., Ghez, R., and Dong, D.W., J. Appl. Phys. 51, 4830 (1980).Google Scholar
33. Ozawa, Y. and Yamabe, K., from “Ext. Abstr. 1991 Inter. Conf. Solid-State Dev. and Mat.”, (Jap. Soc. Appl. Phys., Tokyo, 1991), pp. 240242.Google Scholar
34. Kubota, T., Apte, P., and Saraswat, K.C., in “1992 ECS Spring Meeting Extended Abstracts”, (ECS, Princeton, N.J., 1992), pp. 424425.Google Scholar
35. Shmidt, T.V., Gurtov, V.A., and Laleko, V.A., Mikroelektronika 17, 244 (1988).Google Scholar
36. Eklund, E.A., McFeely, F.R., and Cartier, E., Phys. Rev. Lett. 69, 1407 (1992).Google Scholar
37. Gildenblat, G. Sh., Huang, C.-L., and Grot, S.A., J. Appl. Phys. 64, 2150 (1988).Google Scholar
38. DiMaria, D.J. and Fischetti, M.V., J. Appl. Phys. 64, 4683 (1988).Google Scholar
39. DiMaria, D.J., Cartier, E., and Arnold, D., unpublished.Google Scholar
40. Yankova, A., DoThanh, L., and Balk, P., Solid-State Electron. 30, 939 (1987).Google Scholar
41. Farmer, K.R., Andersson, M.O., and Engstrom, O., Appl. Phys. Lett. 58, 2666 (1991).Google Scholar