Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-28T23:01:47.779Z Has data issue: false hasContentIssue false

Impact Ionization and Auger Recombination in Semiconductors: Implementation Within the Flapw Code

Published online by Cambridge University Press:  21 March 2011

S. Picozzi
Affiliation:
INFM - Dip. Fisica, Univ. L'Aquila, 67010 Coppito (L'Aquila), Italy
A. Continenza
Affiliation:
INFM - Dip. Fisica, Univ. L'Aquila, 67010 Coppito (L'Aquila), Italy
R. Asahi
Affiliation:
Toyota Central R&D Labs. Inc., Japan
W. Mannstadt
Affiliation:
Fachbereich Physik, Philipps-Universitat Marburg, Germany
C. B. Geller
Affiliation:
Bettis Atomic Power Laboratory, West Miffin, PA (U.S.A.)
A. J. Freeman
Affiliation:
Dept. of Phys. and Astron. and Materials Research Center, Northwestern University, Evanston, IL 60208 (U.S.A.)
Get access

Abstract

We present a method to calculate impact ionization and Auger recombination rates within density functional theory and a screened-exchange approach and implement it in the all- electron FLAPW method. We investigate the dependence of the overlap matrix elements as a function of the states involved along the main symmetry lines of the Brillouin zone. Our results for the final impact ionization rates along the main symmetry lines of the Brillouin zone. Our results for the final impact ionization rates along τ — X and τ —L directions for GaAs show a strong anisotropy imposed by energy and momentum conservation and related to the use of a realistic and accurate sX-LDA band structure.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Harrison, D., Abram, R. A. and Brand, S., J. Appl. Phys. 85, 8178 (1999).Google Scholar
[2] Bylander, B. M. and Kleinman, L., Phys. Rev. B 41, 7868 (1990); A. Seidl, A. Gorling, P. Vogl, J. A. Majewski and M. Levy, ibid. 53, 3764 (1996).Google Scholar
[3] Sano, N. and Yoshii, A., Phys. Rev. B 45, 4171 (1992).Google Scholar
[4] Stobbe, M., Redmer, R. and Schattke, W., Phys. Rev. B 49, 4494 (1994).Google Scholar
[5] Jung, H. K., Nakano, H., and Taniguchi, K., Physica B 272, 244 (1999).Google Scholar
[6] Fischetti, M. V., Sano, N., Laux, S.E., and Natori, K., IEEE-Transactions-on-Semiconductor-Technology-Modeling-and-Simulation (1998).Google Scholar
[7] Krishnamurthy, S., Sher, A. and Chen, A. B., J. Appl. Phys. 82(11), 5540 (1997).Google Scholar
[8] Jansen, H.J.F. and Freeman, A.J., Phys. Rev. B 30, 561 (1984).Google Scholar
[9] Cappellini, G., Sole, R. Del, Reining, L. and Bechstedt, F., Phys. Rev. B 47, 9892 (1993).Google Scholar
[10] Asahi, R., Mannstadt, W. and Freeman, A. J., Phys. Rev. B 59, 7486 (1999); ibid. 62, 2552 (2000).Google Scholar
[11] Laks, D. B., Neumark, G. F., Hangleiter, A. and Pantelides, S. T., Phys. Rev. Lett. 61, 1229 (1988).Google Scholar