Published online by Cambridge University Press: 15 February 2011
This paper gives an overview of the recent developments in impact, friction, and wear testing of polycrystalline silicon (polysilicon) based micro electromechanical structures. Impact-friction actuated micromechanisms form a new type of actuators. In this type of actuators, lateral resonant structures are retracted by electrostatic comb drives and are propelled forward toward the actuated micromechanism by elastic forces generated by folded beam flexures at frequencies ranging from 10 kHz to 20 kHz. This sequence generates normal impact and tangential friction contact between the two microstructures, raising wear concerns. Two sorts of impact test structures are introduced in this paper, One with a resonant micro impact bumper (MIB) striking a stationary impact wall anchored ofn the substrate. Another is a testing of two MIBs driven to impact each other. Two types of impact actuators are also described, an impact actuated micro angular oscillator (MAO) and a polysilicon micro vibromotor. The vibromotor is a rotor driven by oblique impact on the rim by a converter pointer tip attached to a lateral resonator. Some initial results of impact wear testing as well as static and dynamic friction done by researchers in the field are also described in the paper. Finally, many areas where material scientists can contribute to this field are suggested.