Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-23T03:37:00.907Z Has data issue: false hasContentIssue false

Immobilization of Persimmon Tannin on Cellulose Viscopearls and Removal of Caffeine from Aqueous Solution

Published online by Cambridge University Press:  18 March 2015

Dennise Alejandra Murguía Flores*
Affiliation:
Tecnológico de Monterrey, Campus Monterrey. Eugenio Garza Sada 2501 Sur Col. Tecnológico.C.P. 64849. Monterrey, Nuevo León, México.
Ahmad La Ode
Affiliation:
Graduate School of Natural Science & Technology, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
Ko-Ki Kunimoto
Affiliation:
Graduate School of Natural Science & Technology, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
Jaime Bonilla Ríos
Affiliation:
Tecnológico de Monterrey, Campus Monterrey. Eugenio Garza Sada 2501 Sur Col. Tecnológico.C.P. 64849. Monterrey, Nuevo León, México.
*
*Corresponding Author’s e-mail: [email protected] Tel: 018183582000 Ext.5000
Get access

Abstract

An eco-friendly adsorbent was prepared by immobilization of Persimmon Tannin (PT) in cellulose viscopearls to remove caffeine. The immobilization time within a range of 1-42days was performed. Batch adsorption experiments were studied for different Persimmon Tannin on Cellulose Viscopearls (PTIC) gel samples, adsorbent dosage, and initial caffeine concentration. FTIR indicated that PT was successfully immobilized onto viscopearls. SEM images showed differences especially on particle size and shape, between control, day7, and day28 of PTIC gel samples. The adsorption capacity results showed that removal of caffeine as the amount of adsorbed increased, the percentage of caffeine adsorption increased accordingly, but it decreased with the increased in initial caffeine concentration. Results for different PTIC gel samples showed that day 42 PTIC sample exhibits the highest adsorption capacity of caffeine solution of 43.3mg/g. The samples showed water contents in the range of 343-324%.The equilibrium data were analyzed using Freundlich and Langmuir equations. It suggested that viscopearls acted to be a suitable insoluble matrix to immobilized PT, instead of using crosslinkers.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Kumar, P. S., Ramalingam, S., Senthamarai, C., Niranjanaa, M., Vijayalakshmi, P., Sivanesan, S., Desalination 261, 5260 (2010).CrossRefGoogle Scholar
Rafatullah, M., Sulaiman, O., Hashim, R., Ahmad, A., J.Hazard. Mater. 174, 916 (2010).Google Scholar
Sánchez-Martín, J., Gonzalez-Velasco, M., Beltrán-Heredia, J., J. Hazard. Mater. 174, 916 (2010).CrossRefGoogle Scholar
Demirbas, A., J. Hazard. Mater. 157, 220229 (2008).CrossRefGoogle Scholar
Matsumura, T., Usuda, S., J. Alloy Compd. 271273, 244247 (1989).Google Scholar
Nakano, Y., Takeshita, K., Tsutsumi, T., Water Research. 35, 496500 (2001).CrossRefGoogle Scholar
Sengil, I. A., Ozacar, M., J. Hazard. Mater. 162, 10461052 (2009).CrossRefGoogle Scholar
Haslam, E., Plant Polyphenols– Vegetable Tannins Revisited; Cambridge University Press: Cambridge (1989).Google Scholar
Sugiura, A., Subhadrabandhu, S., Overview of persimmon culture. Chronica Horticulturae 36, 1415 (1996).Google Scholar
Ahmad, L. O., Linh, L. H. M., Akimoto, M., Kaneki, Y., Honda, M., Suda, M., Kunimoto, K., K. Food Sci. Technol. Res. 19, 697703 (2013).CrossRefGoogle Scholar
Matsuo, T., Ito, S., Agric. Biol. Chem. 42, 16371643 (1978).Google Scholar
Xu, S., Zou, B.. Yang, J., Yao, P., Li, C., Fitoterapia 83, 153160 (2012).CrossRefGoogle Scholar
Gurung, M., Adhikari, B. B., Kawakita, H., Ohto, K., Inoue, K., Chem. Eng. J. 174, 556–56 (2011).CrossRefGoogle Scholar
Chibata, I., Tosa, T., Mori, T., Watanabe, T., Sakata, N., Enzyme Microb. Technol. 8, 130136 (1986).CrossRefGoogle Scholar
Tondi, G. C., Oo, W., Pizzi, A., Trosa, A., Thevenon, M. F., Ind. Crop. Prod. 29, 336340 (2009).CrossRefGoogle Scholar
Saito, T., Isogai, A., Carbohyd. Polym. Sci. 26, 13411417 (2005).Google Scholar
Vázquez, G., Antorrena, G., Gonzalez, J., Doval, M. D., Bioresour. Technol. 48, 251255 (1994).CrossRefGoogle Scholar
Kunimoto, K., apan Pat. Appl. 252116 (2011).Google Scholar
Nakajima, A., Sakaguchi, T., J.Chem. Tech. Biotechnol. 40, 223232 (1987).CrossRefGoogle Scholar
Nakajima, A., Sakaguchi, T., J.Chem. Technol. Biotechnol. 47, 3138 (1990).CrossRefGoogle Scholar
Mogadassi, F., Heravi, M. M., Bozorgmehr, M. R., Ardalan, P., Asian J. Chem. 22, 50935100 (2010).Google Scholar
Elass, K., Laachach, A., Alaoui, A., Azzi, M., Appl. Clay Sci. 54, 9096 (2011).CrossRefGoogle Scholar
Aksu, Z., Ertuğrul, S., Dönmez, G., Chem. Eng. J. 158, 474481 (2010).CrossRefGoogle Scholar
Yao, Z-Y., Qi, J-H., Wang, L-H., J. Hazard. Mater. 174, 137143 (2010).CrossRefGoogle Scholar
Allen, S. J., McKay, G., Porter, J. F., J. Colloid Interf. Sci. 280, 322333 (2004).CrossRefGoogle Scholar
Ye, J-H., Wang, L-X., Chen, H, Dong, J-J, Lu, J-L., Zheng, X-Q., Wu, M- Y., Liang, Y-R, J. Biosci. Bioeng. 111, 232236 (2011).CrossRefGoogle Scholar
Doğan, M., Abak, H., Alkan, M., J. Hazard. Mater. 164, 172181 (2009).CrossRefGoogle Scholar
Von Oepen, B., Kördel, W., Klein, W., Chemosphere 22, 285304 (1991).CrossRefGoogle Scholar
Weng, C. H., Lin, Y. T., Tzeng, T. W., J. Hazard. Mater. 170, 417424 (2009).CrossRefGoogle Scholar
Hashemian, S., Dadfarnia, S., Nategi, M. R., Gafoori, F., Afr. J. Biotech. 7, 600 (2008).Google Scholar
Amin, N. K., J. Hazard. Mater. 165, 52 (2009).CrossRefGoogle Scholar