Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-27T02:32:27.067Z Has data issue: false hasContentIssue false

Immobilization of Cobalt Complexes on Mesoporous MCM-41 Support Materials

Published online by Cambridge University Press:  10 February 2011

J. F. Diaz
Affiliation:
Department of Chemistry, University of Texas at Dallas, Richardson TX 75083–0688, [email protected]
F. Bedioui
Affiliation:
Laboratoire d'Electrochimie et de Chimie Analytique (URA n°216 du CNRS), Ecole Nationale Supérieure de Chimie de Paris, 11 rue Pierre et Marie Curie, 75231 Paris cedex 05, France33 1 44 27 67 51; [email protected].
E. Briot
Affiliation:
Laboratoire d'Electrochimie et de Chimie Analytique (URA n°216 du CNRS), Ecole Nationale Supérieure de Chimie de Paris, 11 rue Pierre et Marie Curie, 75231 Paris cedex 05, France33 1 44 27 67 51; [email protected].
J. Devynck
Affiliation:
Laboratoire d'Electrochimie et de Chimie Analytique (URA n°216 du CNRS), Ecole Nationale Supérieure de Chimie de Paris, 11 rue Pierre et Marie Curie, 75231 Paris cedex 05, France33 1 44 27 67 51; [email protected].
K. J. Balkus Jr
Affiliation:
Department of Chemistry, University of Texas at Dallas, Richardson TX 75083–0688, [email protected]
Get access

Abstract

The pore surface of mesoporous MCM-41 type materials have been functionalized with silanes to yield surface bound chelate ligands that include ethylenediamine (ED), diethylenetriamine (DET) and ethylenediaminetriacetic acid salt (EDT). Additionally, The grafted DET ligand was reacted with salicylaldehyde to generate the supported tetradentate Schiff base ligand designated as DES. The MCM-41 bound ligands were used to prepare a series of covalently attached cobalt(II) complexes that potential as oxygen carriers and catalysts. These materials were characterized by FTIR and cyclic voltammetry as well as elemental analysis.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Beck, S. J., Vartuli, J. C., Roth, W. J., Leonowicz, M. E., Kresge, C. T., Schmitt, K. D., Chu, C. T-W., Olson, D. H., Sheppard, E. W., McCullen, S. B., Higgens, J. B. and Schlenker, J. L., J. Am. Chem. Soc. 114, 10834 (1992).Google Scholar
2. Kresge, C. T., Leonowicz, M. E., Roth, W. J., Vartuli, J. C. and Beck, J. S., Nature 359,710 (1992).Google Scholar
3. (a) Corma, A., Fornés, V., Garcia, H., Miranda, M. Sabater, M. J., J. Am. Chem. Soc. 116, 9767 (1994). (b) C-G. Wu and T. Bein, Science, 264, 1757 (1994).Google Scholar
4. Maschmeyer, T., Rey, F., Sankar, G. and Thomas, J. M., Nature 378, 159 (1995).Google Scholar
5. Morey, M., Davidson, A., Eckert, H. and Stucky, G., Chem. Mater. 8, 486 (1996).Google Scholar
6. Brunel, D., Cauvel, A., Fajula, F. and Renzo, F. Di, Stud. Surf. Sci. Catal. 94, 173 (1995).Google Scholar
7. Diaz, J. F., Jr, K. J. Balkus., Bedioui, F. and Kevan, L., Manuscript Submitted.Google Scholar
8. Maeder, M. and Mäcke, H. R., Inorg. Chem. 33, 3135 (1994) and references cited therein.Google Scholar
9. Bedioui, F., De Boysson, E., Devynck, J. and Balkus, K. J. Jr., J. Chem. Soc. Farad. Trans. 87, 3831 (1991).Google Scholar
10. Percentage coverage is calculated from the assumption that 14% of the silicons in MCM-41 are accessible silanols.Google Scholar
11. Cauvel, A., Brunel, D., Renzo, F. Di, Moreau, P. and Fajula, F., Stud. Surf. Sci. Catal. 94, 286 (1995).Google Scholar
12. Lay, P. A., McAlpine, N. S., Hupp, J. T., Weaver, M. J. and Sargeson, A. M., Inorg. Chem. 29, 4322 (1990).Google Scholar