Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-27T02:11:36.186Z Has data issue: false hasContentIssue false

Imaging polymer supported organic molecules by mass spectrometry Application in combinatorial chemistry

Published online by Cambridge University Press:  01 February 2011

C. Enjalbal
Affiliation:
UMR 5810, Laboratoire des Aminoacides Peptides et Protéines, Universités Montpellier 1 et 2, Place E. Bataillon, 34095 Montpellier Cedex 5
D. Maux
Affiliation:
UMR 5810, Laboratoire des Aminoacides Peptides et Protéines, Universités Montpellier 1 et 2, Place E. Bataillon, 34095 Montpellier Cedex 5
R. Combarieu
Affiliation:
UMR 7635, CEMEF, Ecole des Mines de Paris, 06904 Sophia Antipolis, France
J. Martinez
Affiliation:
UMR 5810, Laboratoire des Aminoacides Peptides et Protéines, Universités Montpellier 1 et 2, Place E. Bataillon, 34095 Montpellier Cedex 5
J-L. Aubagnac
Affiliation:
UMR 5810, Laboratoire des Aminoacides Peptides et Protéines, Universités Montpellier 1 et 2, Place E. Bataillon, 34095 Montpellier Cedex 5
Get access

Abstract

In combinatorial chemistry, most libraries are prepared according to solid-phase synthesis strategies using resins or pins. Although synthesis and purification steps are facilitated, reaction monitoring presents difficulties. Since the polymeric support is not soluble, an analytical method able to cope with a solid sample is thus required to perform direct identification of the anchored molecules without any chemical treatment. Static-Secondary Ion Mass Spectrometry (S-SIMS) was investigated in that purpose. Positive and negative ion mass spectra were acquired to identify single beads whereas mixtures (Mix and Split libraries or pooled beads issued from different batches) were profiled through imaging experiments.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Dolle, R. E. J. Comb. Chem., 2, 383 (2000)Google Scholar
2. Merrifield, R. B., J. Am. Chem. Soc. 85, 2149 (1963)Google Scholar
3. Geysen, H. M., Meloen, R. H., Barteling, S. J. Proc. Natl. Acad. Sci. USA 81, 3998 (1984)Google Scholar
4. Valerio, R. M., Bray, A. M. & Maeji, N. J. Int. J. Pept. Protein Res., 44, 158 (1994)Google Scholar
5. Enjalbal, C., Martinez, J. & Aubagnac, J-L. Mass Spectrom. Rev., 19, 139 (2000)Google Scholar
6. Pachuta, S. & Cooks, R. G. Chem. Rev. 87, 647 (1987)Google Scholar
7. Benninghoven, A. Agew. Chem Int. Ed. 33, 1023 (1994)Google Scholar
8. Brummel, C. L., Lee, I. N. W., Zhou, Y., Benkovic, S. J. & Winograd, N. Science 264, 399 (1994)Google Scholar
9. Busch, K. L. J. Mass Spectrom., 30, 233 (1995)Google Scholar
10. Gerdes, J. M. & Waldmann, H. J. Comb. Chem., 5, 814 (2003)Google Scholar
11. Drouot, C., Enjalbal, C., Fulcrand, P., Martinez, J., Aubagnac, J-L., Combarieu, R. & de Puydt, Y. Rapid Commun. Mass Spectrom., 10, 1509 (1996)Google Scholar
12. Drouot, C., Enjalbal, C., Fulcrand, P., Martinez, J., Aubagnac, J-L., Combarieu, R. & de Puydt, Y. Tetrahedron Lett. 38, 2455 (1997)Google Scholar
13. Aubagnac, J-L., Enjalbal, C., Subra, G., Bray, A. M., Combarieu, R. & Martinez, J. J. Mass Spectrom. 33, 1094 (1998)Google Scholar
14. Bertrand, P. & Weng, L-T. Mikrochim. Acta. 13, 167 (1996)Google Scholar
15. Enjalbal, C., Maux, D., Combarieu, R., Martinez, J. & Aubagnac, J-L. J. Comb. Chem., 5, 102 (2003)Google Scholar
16. Aubagnac, J-L., Enjalbal, C., Drouot, C., Combarieu, R. & Martinez, J. J. Mass Spectrom., 34, 749 (1999)Google Scholar
17. Enjalbal, C., Maux, D., Subra, G., Martinez, J., Combarieu, R. & Aubagnac, J-L. Tetrahedron Lett., 40, 6217 (1999)Google Scholar
18. Furka, A., Sebestyen, F., Asgedom, M. & Dibo, G. Int. J. Pept. Protein Res. 37, 487 (1991)Google Scholar