Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-25T15:26:52.496Z Has data issue: false hasContentIssue false

Imaging Magnetic Bit Patterns Using a Scanning Tunneling Microscope with a Flexible Tip

Published online by Cambridge University Press:  15 February 2011

John Moreland
Affiliation:
National Institute of Standards and Technology, 325 Broadway, Mail Stop 814.05, Boulder, CO 80303
Paul Rice
Affiliation:
National Institute of Standards and Technology, 325 Broadway, Mail Stop 814.05, Boulder, CO 80303
Get access

Abstract

Tunneling stabilized magnetic force microscopy (TSMFM) is a variant of scanning tunneling microscopy (STM) where the usual rigid STM tip is replaced with a flexible magnetic tip. This method contrasts with other magnetic force microscopes based on optical or capacitive detection of cantilever deflection due to magnetic forces. Instead, the position of the flexible tunneling tip depends on both topography and magnetic forces acting on the end of the tip. The z-motion of the piezoelectric translator flexes the tip to balance the magnetic force so that the end of the tip remains a fixed tunneling distance from the sample surface. We present a review of some TSMFM images showing the recorded bit patterns on hard disk, floppy disk, and tape surfaces. The images were taken in air using STM tips made from free-standing Fe and Ni films about 1 μm thick. The image resolution of TSMFM is routinely submicrometer. We conclude that this simple modification of STM will be a valuable diagnostic tool in the magnetic recording industry.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Binnig, G., Quate, C. F., and Gerber, Ch., Phys. Rev. Lett. 56, 930 (1986).CrossRefGoogle Scholar
2. Martin, Y. and Wickramasinghe, H. K., Appl. Phys. Lett. 50, 1455 (1987); J. J. Saenz, N. Garcia, P. Grutter, E. Meyer, H. Heinzelmann, R. Wiesendenger, L. Rosenthaler, H. R. Hidber, and H. J. Guntherodt, J. Appl. Phys. 68, 4293 (1987); P. C. D. Hobbs, D. W. Abraham, and H. K. Wickramasinghe, Appl. Phys. Lett. 55, 2357 (1989).Google Scholar
3. Abraham, D. W., Williams, C. C., and Wickramasinghe, H. K., Appl. Phys. Lett. 58, 1446 (1988); H. J. Mamin, D. Rugar, J. E. Stern, B. D. Terris, and S. E. Lambert, Appl. Phys. Lett. 53, 1563 (1988); A. Wadas, P. Grutter, and H.-J. Guntherodt, J. Appl. Phys. 67, 3462 (1989); D. Rugar, H. J. Mamin, P. Guethner, S. E. Lambert, J. E. Stern, I. McFadyen, T. Yogi, J. Appl. Phys. 68, 1169 (1990).Google Scholar
4. Schonenberger, C., Alvarado, S. F., Lambert, S. E., and Sanders, I. L., J. Appl. Phys. 67, 7278 (1990).CrossRefGoogle Scholar
5. Allenspach, R., Salemink, H., Bischof, A., and Weibel, E., Z. Phys. B 67, 125 (1987); P. Grutter, E. Meyer, H. Heinzelmann, L. Rosenthaler, H.-R. Hidber, and H.-J. Guntherodt, J. Vac. Sci. Technol. A 6, 279 (1988).Google Scholar
6. Moreland, J. and Rice, P., Appl. Phys. Lett. 57, 310 (1990); IEEE Trans. Mag. 27, 1198 (1991); J. Appl. Phys., July issue (1991); P. Rice and J. Moreland, IEEE Trans. Mag. 27, no.3, May issue (1991).Google Scholar