Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-25T17:59:18.246Z Has data issue: false hasContentIssue false

Illumination Dependence of Microcrystalline PIN Diodes

Published online by Cambridge University Press:  17 March 2011

Torsten Brammer
Affiliation:
Institut für Photovoltaik, Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany
Franz Birmans
Affiliation:
Institut für Photovoltaik, Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany
Mathias Krause
Affiliation:
Institut für Photovoltaik, Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany
Helmut Stiebig
Affiliation:
Institut für Photovoltaik, Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany
Heribert Wagner
Affiliation:
Institut für Photovoltaik, Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany
Get access

Abstract

Numerical simulations of the current-voltage characteristics of PECVD-microcrystalline silicon based p-i-n diodes were performed to study the affect of defect density and mobility on solar cell performance. Depending on the combination of both parameters the ideality factor increases or decreases with applied forward bias. The reason is the variable contribution of volume recombination to the total diode current and space charge stored in defect states. The decrease in dark current with reduced hydrogen dilution can partly be attributed to a decrease in recombination centers by the same factor as predicted for midgap defect states by the analytic diode theory. Microcrystalline silicon solar cells deposited in the highly crystalline regime (high H-dilution) are limited by recombination of photogenerated carriers and high dark current. Both can be attributed to a large number of recombination centers. The fill factor of our state-of-theart solar cell is limited by the dark current for small illumination intensities, by series resistance for high illumination levels and by both at its maximum under AM1.5 illumination. Short-circuit current and open-circuit voltage pairs measured under intensities from 10-6 to 30 suns reveal a diode characteristic corresponding to an ideality factor of one at large forward bias.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Vetterl, O., Finger, F., Carius, R., Hapke, P., Houben, L., Kluth, O., Lambertz, A., Mück, A., Rech, B., Wagner, H., Solar Energy Materials & Solar Cells, 62, 97 (2000)Google Scholar
2. Shah, A., Vallat-Sauvain, E., Torres, P., Meier, J., Kroll, U., Hof, C., Droz, C., Goerlitzer, M., Wyrsch, N., Vanecek, M., Material Science and Engineering B69–70, 219226 (2000)Google Scholar
3. Houben, L., Luysberg, M., Hapke, P., Carius, R., Finger, F. and Wagner, H., Phil. Mag. A 77, 14471460 (1998)Google Scholar
4. Fukawa, M., Suzuki, S., Guo, L., Kondo, M., Matsuda, A., Solar Energy Materials & Solar Cells 66, 217223 (2001)10.1016/S0927-0248(00)00176-8Google Scholar
5. Brammer, T., Stiebig, H., Lambertz, A., Reetz, W. and Wagner, H., Mat. Res. Soc. Symp. Proc. 609 (2000) in printGoogle Scholar
6. Kurata, M., Numerical analysis for semiconductor devices, Lexington Books (1982)Google Scholar
7. Kanschat, P., Mell, H., Lips, K. and Fuhs, W., Mat. Res. Soc. Symp. Proc. 609 (2000) in printGoogle Scholar
8. Sze, S. M., Physics of semiconductor devices, John Wiley & Sons, Inc. (1981)Google Scholar
9. Wolf, M. and Rauschenbach, H., Advanced Energy Conversion 3, 455479 (1963)Google Scholar
10. Sah, C. T., Noyce, R. N., Shockley, W., Proc. IRE 45, 12281243 (1957)10.1109/JRPROC.1957.278528Google Scholar
11. Finger, F., Vetterl, O., Carius, R., Lambertz, A., Scholten, C., Houben, L., Luysberg, M., Proc. of the 11th ISCMP Varna (Bulgaria) 2000, Eds: Marshall, J.M., Kirov, N., Vavrek, A., Maud, J.M., World Scientific Publishing, Singapore (2001)Google Scholar