Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-27T01:41:37.833Z Has data issue: false hasContentIssue false

II–VI / III–V Heterostructures

Published online by Cambridge University Press:  26 February 2011

L. A. Kolodziejski
Affiliation:
School of Electrical Engineering, Purdue University, West Lafayette, IN 47907
R. L. Gunshor
Affiliation:
School of Electrical Engineering, Purdue University, West Lafayette, IN 47907
N. Otsuka
Affiliation:
Materials Engineering, Purdue University, West Lafayette, IN 47907
A. V. Nurmikko
Affiliation:
Division of Engineering and Department of Physics, Brown University, Providence, RI 02912
Get access

Abstract

The integration of several optoelectronic device functions onto a common substrate material is an area which is currently being actively pursued. In an effort to achieve this objective, experiments are under way to examine the epitaxial growth and material properties of a variety of both II–VI and III–V compounds grown on a substrate where the II–VI/III–V heterostructure can be utilized. This paper describes some recent developments involving the molecular beam epitaxial (MBE) growth and characterization of two important II–VI/III–V heterostructures: ZnSe/GaAs and InSb/CdTe;. a comparison is made between epitaxial layer/substrate interfaces and epilayer/epilayer interfaces for both heterostructures. The ZnSe/GaAs heterointerface, having a 0.25% lattice constant mismatch, has potential for use in passivation of GaAs devices. The InSb/CdTe heterointerface possesses an even closer lattice match, ∼0.05% (comparable to the (Al,Ga)As/GaAs material system), and is motivated by possible device applications provided by InSb/CdTe quantum wells.

Type
Research Article
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Gunshor, R. L., Kolodziejski, L. A., Melloch, M. R., Vaziri, M., Choi, C., and Otsuka, N., Appl. Phys. Lett. 50, 200 (1987).Google Scholar
[2]Kowalczyk, S. P., Miller, D. L., Waldrop, J. R., Newman, P. G., and Grant, R. W., J. Vac. Sci. Technol. 19, 255 (1981).Google Scholar
[3]Miller, D. L., Chen, R. T., Elliott, K., Kowalczyk, S. P., J. Appl. Phys. 57, 1922 (1985).Google Scholar
[4]Kolodziejski, L. A., Gunshor, R. L., Nurmikko, A. V., and Otsuka, N., Proceedings of the NATO Advanced Workshop on “Thin-Film Growth Techniques for Low Dimensional Structures,” Brighton, U.K., September 15–19, 1986.Google Scholar
[5] Gunshor, R. L. and Kolodziejski, L. A., IEEE J. Quantum Electronics, Special Issue on Quantum Well Heterostructures and Superlattices, to be published.Google Scholar
[6]Tamargo, M. C., de Miguel, J.L., Hwang, D. M., Skromme, B. J., Meynadier, M. H., Nahory, R. E., paper presented at the Materials Research Society Symposium, Boston, December, 1987.Google Scholar
[7]Studtmann, G. D., Gunshor, R. L., Kolodziejski, L. A., Melloch, M. R., Cooper, J. A., Jr., Pierret, R. F., Munich, D. P., Choi, C., and Otsuka, N., submitted to Appl. Phys. Lett.Google Scholar
[8]Yao, T., Okada, Y., Matsuri, S., Ishida, K., and Fujimoto, I., J. Crystal Growth 81,518 (1987).Google Scholar
[9]Studtmann, G. D., Gunshor, R. L., Kolodziejski, L. A., Melloch, M. R., Otsuka, N., Munich, D. P., Cooper, J. A., Jr., and Pierret, R. F., paper presented at the 45th Device Research Conference, Santa Barbara, CA, June 22–24, 1987.Google Scholar
[10]Yao, Takafumi, Makita, Yunosuke, and Maekawa, Shigeru, Appl. Phys. Left. 35, 97 (1979).Google Scholar
[11]Yao, Takafumi, The Technology and Physics of Molecular Beam Epitaxy, Parker, E. H. C., Ed., New York, 1985: Plenum Press.Google Scholar
[12]Kolodziejski, L. A., Sakamoto, T., Gunshor, R. L., and Datta, S., Appl. Phys. Lett. 44, 799 (1984).Google Scholar
[13]Yoneda, Kiyoshi, Hishida, Yuji, Toda, Tadao, Ishii, Hiroaki, and Niina, Tatsuhiko, Appl. Phys. Lett. 45, 1300 (1984).Google Scholar
[14]Kolodziejski, L. A., Gunshor, R. L., Bonsett, T. C., Venkatasubramanian, R., Datta, S., Bylsma, R. B., Becker, W. M., and Otsuka, N., Appl. Phys. Left. 47,169 (1985).Google Scholar
[15]Ohkawa, K., Mitsuyu, T., and Yamazaki, O., Extended Abstracts of the 18th Conference on Solid State Devices and Material, Tokyo, p. 635 (1986).Google Scholar
[16]Tersoff, J., Phys. Rev. Left. 56, 2755 (1986).Google Scholar
[17]Mackey, K. J., Allen, P. M. G., Herrenden-Harker, W. G., Williams, R. H., Whitehouse, C. R., and Williams, G. M., Appl. Phys. Lett. 4, 354 (1986).Google Scholar
[18]van Welzenis, R. G. and Ridley, B. K., Solid-State Electron. 27, 113 (1984).Google Scholar
[19]Sugiyama, Koichi, J. Crystal Growth 60, 450 (1982)Google Scholar
[20]Farrow, R. F. C., Jones, G. R., Williams, G. M., and Young, I. M., Appl. Phys. Left. 3, 954 (1981).Google Scholar
[21]Wood, S., Greggi, J., Jr., Farrow, R. F. C., Takei, W. J., Shirland, F. A., and Noreika, A. J., J. Appl. Phys. 55, 4225 (1984).Google Scholar
[22]Williams, G. M., Whitehouse, C. R., Chew, N. G., Blackmore, G. W., and Cullis, A. G., J. Vac. Sci. Technol. B 3, 704 (1985).Google Scholar
[23]Zahn, D. R. T., Mackey, K. J., Williams, R. H., Munder, H., Geurts, J., and Richter, W., Molecular Beam Epitaxy, York, England, September 7–10, 1986. Appl. Phys. Left. 50, 742 (1987).Google Scholar
[24]Farrow, R. F. C., Noreika, A. J., Shirland, F. A., Takei, W. J., Wood, S., Greggi, J., Jr., and Francombe, M. H., J. Vac. Sci. Technol. A2, 527 (1984).Google Scholar
[25]Williams, G. M., Whitehouse, C. R., Martin, T., Chew, N. G., Cullis, A. G., Ashley, T., Sykes, D. E., and Mackey, K., paper presented at the 4th International Conference onGoogle Scholar
[26]Neave, J. H., Blood, P., and Joyce, b. A., Appl. Phys. Lett. 36, 311 (1980).Google Scholar
[27]Missous, M. and Singer, K. E., Appl. Phys. Lett. 5, 694 (1987).Google Scholar
[28]Metze, G. M., Calawa, A. R., and Mavroides, J. G., J. Vac. Sci. Technol. B1, 166 (9183).Google Scholar
[29]Dawson, R., private communication.Google Scholar
[30]Noreika, A. J., Francombe, M. H., and Wood, C. E. C., J. Appl. Phys. 52, 7416 (1981).Google Scholar
[31]Moouradian, A. and Fan, H. Y., Phys. Rev. 148, 873 (1966).Google Scholar
[32]Pehek, J. and Levinstein, H., Phys. Rev. 140, A576 (1965).Google Scholar
[33]Cullis, A. G., Chew, N. G., and Hutchison, J. L., Ultramicroscopy 17, 203 (1985).Google Scholar
[34]Ourmazd, A., Tsang, W. T., Rentshler, J. A., and Taylor, D. W., Appl. Phys. Lett. 50, 1417 (1987).Google Scholar