Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-27T01:59:03.706Z Has data issue: false hasContentIssue false

III-V CMOS technologies on Si platform

Published online by Cambridge University Press:  13 July 2011

M. Takenaka
Affiliation:
Department of Electrical Engineering and Information Systems, University of Tokyo, Bunkyo, Tokyo 113-8656, Japan
S. Takagi
Affiliation:
Department of Electrical Engineering and Information Systems, University of Tokyo, Bunkyo, Tokyo 113-8656, Japan
Get access

Abstract

The heterogeneous integration of III-V semiconductors with the Si platform is expected to provide high performance CMOS logic for future technology nodes because of high electron mobility and low electron effective mass in III-V semiconductors. However, there are many technology issues to be addressed for integrating III-V MOSFETs on the Si platform as follow; high-quality MOS interface formation, low resistivity source/drain formation, and high-quality III-V film formation on Si substrates. In this paper, we present several possible solutions for the above critical issues of III-V MOSFETs on the Si platform. In addition, we present the III-V CMOS photonics platform on which III-V MOSFETs and III-V photonics can be monolithically integrated for ultra-large scale electric-optic integrated circuits.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

2. Xuan, Y., Lin, H. C., and Ye, P. D., Appl. Phys. Lett., Vol. 88, 263518, 2006.Google Scholar
3. Shahrjerdi, D., Rotter, T., Balakrishnan, G., Huffaker, D., Tutuc, E., and Banerjee, S. K., IEEE Electron Devices Lett., 29, pp. 557, 2008.Google Scholar
4. Chiu, H. C., Tung, L. T., Chang, Y. H., Lee, Y. J., Chang, C. C., Kwo, J., and Hong, M., , J. Appl. Phys., 93, 202903, 2008.Google Scholar
5. Xuan, Y., Wu, Y. Q., Lin, H. C., Shen, T., and Ye, P. D., IEEE Electron Devices Lett., 28, pp. 935, 2007.Google Scholar
6. Hasegawa, H., Akazawa, M., Ishii, H., and Matsuzaki, K., J. Vac. Sci. Technol., B 7, pp. 870, 1989.Google Scholar
7. Lin, J., Lee, S., Oh, H.-J., Yang, W., Lo, G. Q., Kwong, D. L., and Chi, D. Z., IEDM Tech. Dig. pp. 401, 2008.Google Scholar
8. Hoshii, T., Yokoyama, M., Yamada, H., Hata, M., Yasuda, T., Takenaka, M., and Takagi, S., Appl. Phys. Lett., Vol. 97, 132102, 2010.Google Scholar
9. Tsuchiya, H., Maenaka, A., Mori, T., and Azuma, Y., IEEE Electron Device Lett., 31, No.4,pp. 365, 2010.Google Scholar
10. Nishi, Y., Japanese Patent 587 527, 1970.Google Scholar
11. Kim, S. H., Yokoyama, M., Taoka, N., Iida, R., Lee, S., Nakane, R., Urabe, Y., Miyata, N., Yasuda, T., Yamada, H., Fukuhara, N., Hata, M., Takenaka, M., and Takagi, S., Appl. Phys. Express., Vol. 4, 024201, 2011.Google Scholar
12. Datta, S., Dewey, G., Fastenau, J. M., Hudait, M. K., Loubychev, D., Liu, W. K., Radosavljevic, M., Rachmady, W., and Chau, R., IEEE Electron. Device Lett., 28, pp. 685, 2007.Google Scholar
13. Yokoyama, M., Yasuda, T., Takagi, H., Yamada, H., Fukuhara, N., Hata, M., Sugiyama, M., Nakano, Y., Takenaka, M., Takagi, S., Appl. Phys. Express., Vol. 2, 124501, 2009.Google Scholar
14. Yokoyama, M., Yasuda, T., Takagi, H., Miyata, N., Urabe, Y., Ishii, H., Yamada, H., Fukuhara, N., Hata, M., Sugiyama, M., Nakano, Y., Takenaka, M. and Takagi, S., Appl. Phys. Lett., Vol.96, 142106, 2010.Google Scholar
15. Yokoyama, M., Iida, R., Kim, S. H., Taoka, N., Urabe, Y., Yasuda, T., Takagi, H., Yamada, H., Fukuhara, N., Hata, M., Sugiyama, M., Nakano, Y., Takenaka, M., and Takagi, S., IEDM, 3.1, San Francisco, 12 2010.Google Scholar
16. Seabaugh, A. C., and Zhang, Q., Proceesings of the IEEE, vol. 98, no. 12, pp. 20952110, 2010.Google Scholar
17. Takenaka, M., and Nakano, Y., Optics Express Letters, vol. 15, no. 13, pp. 84228427, 2007.Google Scholar
18. Takenaka, M., Yokoyama, M., Sugiyama, M., Nakano, Y., and Takagi, S., Appl. Phys. Express., Vol. 2, 122201, 2009.Google Scholar
19. Capasso, F., and Williams, G. F., J. Ectrochem. Soc., 129, pp. 822, 1982.Google Scholar
20. Bruno, G., Capezzuto, P., and Losurdo, M., Vacuum, 57, pp. 189, 2000.Google Scholar
21. Hecht, J.-D., Frost, F., Chasse, T., Hirsch, D., Neumann, H., Schindler, A., and Bigl, F., Applied Surface Science, 179, pp. 196, 2001.Google Scholar
22. Hecht, J.-D., Frost, F., Hirsch, D., Neumann, H., Schindler, A., Preobrajenski, A. B. and Chasse, T., J. Appl. Phys., 90, pp. 6066, 2001.Google Scholar
23. Berkovits, V. L., Ulin, V. P., Losurdo, M., Capezzuto, P., Bruno, G., Perna, G. and Capozzi, V., Appl. Phys Lett. 80, pp. 3739, 2002.Google Scholar
24. Gao, F., Lee, S. J., Chi, D. Z., Balakumar, S., and Kwong, D.-L., Appl. Phys Lett., 90, 252904, 2007 Google Scholar
25. Haimoto, T., Hoshii, T., Takenaka, M., and Takagi, S., J. Appl. Phys., 96, 012107, 2010.Google Scholar
26. Takagi, S., Tezuka, T., Irisawa, T., Nakaharai, S., Numata, T., Usuda, K., Sugiyama, N., Shichijo, M., Nakane, R., Sugahara, S., Solid State Electron., 51, pp. 526, 2007.Google Scholar