Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-05T16:10:45.762Z Has data issue: false hasContentIssue false

Identifying and Quantifying Actinide Radiation Damage in Ceramics with Radiological Magic-Angle Spinning Nuclear Magnetic Resonance

Published online by Cambridge University Press:  26 February 2011

Ian Farnan
Affiliation:
[email protected], University of Cambridge, Earth Sciences, Downing Street, Cambridge, CB3 9JA, United Kingdom, +44 1223 333431, +44 1223 333450
Herman Cho
Affiliation:
[email protected], Pacific Northwest National Laboratory, Richland, WA, 99352, United States
William J. Weber
Affiliation:
[email protected], Pacific Northwest National Laboratory, Richland, WA, 99352, United States
Get access

Abstract

In the characterisation of amorphisation or local disordering due to actinide radiation damage, nuclear magnetic resonance (NMR) spectroscopy is attractive because it is element specific and equally sensitive to local structure in crystalline and amorphous materials. Here, we have applied high-resolution solid-state NMR spectroscopy (magic-angle spinning) to radiation damaged natural minerals containing 238U/232Th to determine the ‘number fraction’ of amorphous material (fa) through spin-counting techniques. In samples with a known alpha dose, the number of atoms displaced per alpha decay may be determined from an integration of the spectrum. A protocol for performing similar radiological magic-angle spinning experiments on plutonium containing ceramic samples with an activity of > 5 GBq isp described. Results obtained have allowed data from ancient, radiation damaged mineral samples of ZrSiO4 (238U/232Th) to be compared with modern 238/239Pu doped ceramic ZrSiO4 samples. The number of atomic displacements per alpha particle from 239Pu is similar to that for 238U/232Th (4980 ± 300/α). At lower ?-doses there are significant differences in the amorphous volume fraction (observed by density and x-ray diffraction) and the number fraction of displaced atoms (as measured by NMR) as a function of cumulative dose. These differences arise from local density considerations that manifest themselves in the local structure of the amorphous and crystalline phases. Using ab initio simulations of the damaged crystalline and amorphous regions, the magnetic response of these structures and hence the NMR shifts can be compared with experiment to reveal the nature of radiation induced changes occurring at the local scale.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Eckert, H., Prog. Nucl. Magn. Reson. Spectrosc. 24, 159293 (1992).Google Scholar
2 Holland, H. D. and Gottfried, D., Acta Cryst. 8,291300 (1955).Google Scholar
3 Murakami, T., Chakoumakos, B. C., Ewing, R. C., Lumpkin, G. R., and Weber, W. J., Am. Miner 76,15101532 (1991).Google Scholar
4 Ziegler, J. F., The Stopping and Range of Ions in Matter (Pergamon Press, 1985).Google Scholar
5 Heinisch, H. L. and Weber, W. J., Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms 228,293298 (2005).Google Scholar
6 Trachenko, K. O., Dove, M. T., and Salje, E. K. H., J. Phys. Condens. Matt. 13,19471959 (2001).Google Scholar
7 Trachenko, K., Dove, M. T., and Salje, E. K. H., Physical Review B 65, art. no.–180102 (2002).Google Scholar
8 Trachenko, K., Dove, M. T., and Salje, E. K. H., J. Phys. Condens. Matt. 15, L1–L7 (2003).Google Scholar
9 Crocombette, J.-P. and Ghaleb, D., Journal of Nuclear Materials 3,282286 (1998).Google Scholar
10 Corrales, L. R., Weber, W. J., Chartier, A., Meis, C., and Crocombette, J. P., J.Phys. Condens. Matt. 15,64476456 (2003).Google Scholar
11 Park, B., Weber, W. J., and Corrales, L. R., Physical Review B 6417, art. no.–174108 (2001).Google Scholar
12 Park, B., Weber, W. J., and Corrales, L. R., Physical Review B 65, art. no.–219902 (2002).Google Scholar
13 Devanathan, R., Corrales, L. R., Weber, W. J., Chartier, A., and Meis, C., Physical Review B 69, art. no.–064115 (2004).Google Scholar
14 Devanathan, R., Corrales, L. R., Weber, W. J., Chartier, A., and Meis, C., Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms 228,299303 (2005).Google Scholar
15 Andrew, E. R., Bradbury, A., and Eades, R. G., Nature 182, 1802 (1958).Google Scholar
16 Lowe, I. J., Phys. Rev. Lett. 2, 285 (1959).Google Scholar
17 Farnan, I., Cho, H. M., Weber, W. J., Scheele, R. D., Johnson, N. R., and Kozelisky, A. E., Reviews of Scientific Instruments 75,52325236 (2004).Google Scholar
18 Larsen, F. H. and Farnan, I., Chemical Physics Letters 357,403408 (2002).Google Scholar
19 Rios, S., Salje, E. K. H., Zhang, M., and Ewing, R. C., J. Phys. Condens. Matt. 12,24012412 (2000).Google Scholar
20 Payne, M. C., Teter, M. P., Allan, D. C., A., A. T., and Joannopoulos, J. D., Rev. Mod. Phys. 64,10461097 (1992).Google Scholar
21 Pickard, C. J. and Mauri, F., Physical Review B 63, 245101 (2001).Google Scholar
22 Farnan, I., Balan, E., Pickard, C. J., and Mauri, F., American Mineralogist 88,16631667 (2003).Google Scholar
23 Balan, E., Mauri, F., Pickard, C. J., Farnan, I., and Calas, G., American Mineralogist 88,17691777 (2003).Google Scholar
24 Gibbons, J. F., Proceedings of the Institute of Electrical and Electronics Engineers 60, 1062–& (1972).Google Scholar
25 Farnan, I. and Salje, E. K. H., J. Appl. Phys. 89,20842090 (2001).Google Scholar
26 Farnan, I., Cho, H., and Weber, W. J., Nature (in press) (2006).Google Scholar