Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-27T18:35:26.347Z Has data issue: false hasContentIssue false

Hyperfine Field and Electronic Structure in Fe/Co and Fe/Ni Multilayer Systems

Published online by Cambridge University Press:  15 February 2011

Manabu Takahashi
Affiliation:
Institute for Materials Research, Tohoku University, Sendai 980-77, Japan
Xiao Hu
Affiliation:
Institute for Materials Research, Tohoku University, Sendai 980-77, Japan
Yoshiyuki Kawazoe
Affiliation:
Institute for Materials Research, Tohoku University, Sendai 980-77, Japan
Get access

Abstract

We investigate hyperfine field (Hhf) distributions and electronic structures in magnetic Fe5/Co5 and Fe5/Ni5 multilayer systems using the standard Green function KKR band structure calculation. For the Fe5/Ni5 system the Hhf at the interfacial Fe site is about 10kG smaller than that at the interior Fe site, however, system the Hhf are almost constant in Fe layer for the Fe5/Co5. At the interfacial Ni site the Hhf is almost twice as large as at the interior Ni site or in bulk fcc Ni. Valence contributions to the hyperfine fields (Hv) play important roles for the Hhf distributions. We discuss the relations between core contribution and local spin moment and between valence contribution and total moment within the 1st and 2nd nearest neighbor shells.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Refferences

1. Bloemen, P. J. H., Johnson, M. T., Vorst, M. T. H. van de, Vries, J. J. de, Jungblut, R., Stegge, J. aan de, Reiders, A., and Jonge, W. J. M. de, Phys. Rev. Lett. 72, 764 (1994).Google Scholar
2. Shi, Z. P. and Levy, P. M., Phys. Rev. B49, 15159 (1994).Google Scholar
3. Bakkaloglu, O. F., Thomas, M. F., Pollard, R. J., and Grundy, P. J., J. Magn. Magn. Mater. 125, 221 (1993).Google Scholar
4. Gutierrez, C. G., Qiu, M. D., Tang, H., and Walker, J. C., J. Magn. Magn. Mater. 93, 369 (1991).Google Scholar
5. Akai, H., Drittler, B., and Dederichs, P. H., in Molecular Dynamics Similations, Springer Series in Solid-State Science 103, edited by Yonezawa, F., (Springer-Verlag, 1992), pp. 177.Google Scholar
6. Barth, U. von and Hedin, L., J. Phys. C 5, 1629 (1972).Google Scholar
7. Moruzzi, V. L., Janak, J. F., and Williams, A. R., Calculated Electronic Properties of Metals, (Pergamon, New York, 1978).Google Scholar
8. Akai, H., Akai, M., Bliigel, S., Drittler, B., Ebert, H., Terakura, K., Zeller, R., and Dederichs, P. H., Prog. Theor. Phys. Suppl. 101, 11 (1990).Google Scholar
9. Wieczorek, M. D., Keavney, D. J., Storm, D. F. and Walker, J. C., J. Magn. Magn. Mater. 121, 34 (1993).Google Scholar
10. Wang, Z. Q., Li, Y. S., Jona, F. and Marcus, P. M., Solid State Commun. 61, 623 (1987).Google Scholar
11. Dederichs, P. H., Zeller, R., Akai, H., and Ebert, H., J. Magn. Mag. Mat. 100, 241 (1991).Google Scholar
12. Drittler, B., Stefanou, N., Blfigel, S., and Dederichs, P. H., Phys. Rev. B 40, 8203 (1989).Google Scholar
13. Khoi, Le Dang, Veillet, P. and Campbell, I. A., J. Phys. F 4, 2310 (1974).Google Scholar