Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-19T06:47:51.097Z Has data issue: false hasContentIssue false

Hydrothermally Grown Nanostructured Tungsten Trioxide (hydrate) Films and their Photocatalytic Properties

Published online by Cambridge University Press:  11 January 2012

Z. H. Jiao
Affiliation:
School of Electrical and Electronic Engineering, Nanyang Technological University, Nanyang Avenue, Singapore 639798 Singapore
X.W. Sun
Affiliation:
Department of Applied Physics, College of Science, and Tianjin Key Laboratory of Low-Dimensional Functional Material Physics and Fabrication Technology, Tianjin University, Tianjin 300072, China
Get access

Abstract

We report the growth of sheet-like nanostructured tungsten trioxide hydrate (3WO3·H2O) film on fluorine doped tin oxide (FTO) substrate via a facile crystal-seed-assisted hydrothermal method by using CH3COONH4 as capping agent. Dense thin film composed of irregular blocks with smaller surface area was obtained without the addition of CH3COONH4. X-ray diffraction (XRD) studies indicated that both films were of orthorhombic structure. The nanosheet film grown with CH3COONH4 after dehydration showed highly improved photocatalytic activities than the nanoblock one. The maximum anodic photocurrents of 1.16 mA/cm2 for oxidization of methanol and 0.5 mA/cm2 for water splitting were obtained for the nanosheet film with a highest photoconversion efficiency of about 0.3% under simulated solar illumination.

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Wang, J. X., Sun, X. W., Yang, Y., Huang, H., Lee, Y.C., Tan, O. K., Vayssieres, L., Nanotechnology, 17, 4995 (2006).Google Scholar
2. Vayssieres, L., Graetzel, M., Angew. Chem. Int. Ed. 43, 3666 (2004).Google Scholar
3. Sadek, A. Z., Zheng, H. D., Latham, K., Wilodarski, W., Kalantarzadeh, K., Langmuir, 25, 509 (2009).Google Scholar
4. Granqvist, C. G., Sol. Energy Mater. Sol. Cells, 60, 201 (2000).Google Scholar
5. Niklasson, G. A., Granqvist, C. G., J. Mater. Chem. 17, 127 (2007).Google Scholar
6. Li, X. L., Lou, T. J., Sun, X. M., Li, Y. D., Inorg. Chem. 43, 5442 (2004).Google Scholar
7. Alexander, B. D., Kulesza, P. J., Rutkowska, I., Solarska, R., Augustynski, J., J. Mater. Chem, 18, 2298 (2008).Google Scholar
8. Santato, C., Ulmann, M., Augustynski, J., J. Phys. Chem. B, 105, 936 (2001).Google Scholar
9. Cheng, P., Deng, C. S., Dai, X. M., Li, B., Liu, D. N., Xu, J. M., J. Photochem. Photobiol. A, 195, 144 (2008).Google Scholar
10. Butler, M. A., J. Appl. Phys. 48, 1914 (1977).Google Scholar
11. Sun, H. T., Cantalini, C., Lozzi, L., Passacantando, M., Santucci, S., Pelino, M., Thin Solid Films, 287, 258 (1996).Google Scholar
12. Marsen, B., Miller, E. L., Paluselli, D., Rocheleau, R. E., Int. J. Hydrogen Energy, 32, 3110 (2007).Google Scholar
13. Badilescu, S., Ashrit, P. V., Solid State Ionics, 158, 187 (2003).Google Scholar
14. Yang, B., Zhang, Y. J., Drabarek, E., Barnes, P. R. F., Luca, V., Chem. Mater. 19, 5664 (2007).Google Scholar
15. Wang, J. M., Lee, P. S., Ma, J., Cryst. Growth Des. 9, 2293 (2009).Google Scholar
16. Widenkvist, E., Quinlan, R. A., Holloway, B. C., Grennberg, H., Jansson, U., Cryst. Growth Des. 8, 3750 (2008).Google Scholar
17. Breedon, M., Spizzirri, P., Taylor, M., Plessis, J. D., Mcculloch, D., Zhu, J., Yu, L., Hu, Z., Rix, C., Wiodarski, W., Kalantar-zadeh, K., Cryst. Growth Des. 10, 430 (2010).Google Scholar
18. Ha, J. H., Muralidharan, P., Kim, D. K., J. Alloys Compd. 475, 446 (2009).Google Scholar
19. Gu, Z. J., Zhai, T, Y., Gao, B. F., Sheng, X. H., Wang, Y. B., Fu, H. B., Ma, Y., Yao, J. M., J. Phys. Chem. B, 110, 23829 (2006).Google Scholar
20. Wang, J. M., Khoo, E., Lee, P. S., Ma, J., J. Phys. Chem. C., 112, 14306 (2008).Google Scholar
21. Hong, S. J., Jun, H., Borse, P. H., Lee, J. S., Int. J. Hydrogen Energy, 34, 3234 (2009).Google Scholar
22. Gaikwad, N. S., Waldner, G., Bruger, A., Belaidi, A., Chaqour, S. M., Neumann-Spallart, M., J. Electrochem. Soc. 152, G411 (2005).Google Scholar
23. Solarska, R., Santato, C., Jorand-Sartoretti, C., Ulmann, M., Augustynski, J., J. Appl. Electrochem. 35, 715 (2005).Google Scholar
24. Ahn, K. S., Lee, S. H., Dillon, A. C., Tracy, C. E., Pitts, R., J. Appl. Phys. 101, 093524 (2007).Google Scholar
25. Wang, H., Quan, X., Zhang, Y., Chen, S., Nanotechnology, 19, 065704 (2008).Google Scholar
26. Gratzel, M., Nature, 414, 338 (2001).Google Scholar
27. Bak, T., Nowotny, J., Rekas, M., Sorrell, C. C., Int. J. Hydrogen Energy, 27, 991 (2002).Google Scholar