Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-23T13:15:20.185Z Has data issue: false hasContentIssue false

Hydrothermal Synthesis of Zinc-Doped Magnetite Nanoparticles

Published online by Cambridge University Press:  01 February 2011

Monica Sorescu
Affiliation:
[email protected], Duquesne University, Physics, 600 Forbes Avenue, Pittsburgh, PA, 15282, United States
Lucian Diamandescu
Affiliation:
[email protected], National Institute for Materials Physics, Bucharest, 77125, Romania
Doina Tarabasanu-Mihaila
Affiliation:
[email protected], National Institute for Materials Physics, Bucharest, 77125, Romania
Valentin Teodorescu
Affiliation:
[email protected], National Institute for Materials Physics, Bucharest, 77125, Romania
Get access

Abstract

Hydrothermal techniques have been used to synthesize samples of ZnxFe3−xO4 (x=0.0-1.0) starting with ZnSO4.7H2O/FeSO4.7H2O aqueous solution. The sequence of phases, structural and magnetic properties were followed by X-ray diffraction (XRD), Mössbauer spectroscopy and transmission electron microscopy (TEM). Refinement of the XRD spectra yielded the dependence of the lattice parameters of zinc–doped magnetite and zinc ferrite phase as function of the Zn molar concentration x. As well, the particle diameter was derived as a function of Zn content x. As a function of Zn concentration, the phase content of hydrothermally synthesized samples was found to consist of zinc-doped magnetite, goethite and zinc ferrite. Consistent with the XRD results, Mössbauer spectroscopy data indicate the presence of magnetite and goethite at x≤0.2, magnetite and zinc ferrite at x≤0.9 and pure zinc ferrite only at high zinc concentrations. The presence of different magnetite phases was confirmed by TEM and particles with a size of 50 nm were identified. Our results show that zinc ferrite is formed at high zinc concentration by the hydrothermal method and an acicular component of goethite-magnetite is obtained at low zinc content.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Okamura, A., Nakamura, S., Tanaka, M., Siratori, A., J. Phys. Soc. Jpn. 64, 3484 (1995).Google Scholar
2. van der Zaag, P.J., Bloemen, P.J.H., Gaines, J.M., Wolf, R.M., van der Heijden, P.A.A., van der Veerdonk, R.J.M., de Jonge, W.J.M., J. Magn. Magn. Mater. 211, 301 (2000).Google Scholar
3. Diamandescu, L., Mihaila-Tarabasanu, D., Teodorescu, V., Popescu-Pogrion, N., Mater. Lett. 37, 340 (1998).Google Scholar
4. Sorescu, M., Tarabasanu, D., Diamandescu, L., Int. J. Inorg. Mater. 2, 371 (2000).Google Scholar
5. Sorescu, M., J. Nanopart. Res. 4, 221 (2002).Google Scholar
6. Sorescu, M., Grabias, A., Brand, R.A., Voss, J., Tarabasanu-Mihaila, D., Diamandescu, L., J.Magn. Magn. Mater. 246, 399 (2002).Google Scholar
7. Sorescu, M., Grabias, A., Tarabasanu-Mihaila, D., Diamandescu, L., J. Mater. Synth. Proc. 9, 119 (2001).Google Scholar
8. Sorescu, M., Tarabasanu-Mihaila, D., Diamandescu, L., Mater. Lett. 57, 1867 (2002).Google Scholar
9. Sorescu, M., Diamandescu, L., Brand, R.A., Tarabasanu-Mihaila, D., Mater. Lett. 58, 885 (2004).Google Scholar
10. Sorescu, M., Mihaila-Tarabasanu, D., Diamandescu, L., Appl. Phys. Lett. 72, 2047 (1998).Google Scholar
11. Sorescu, M., J. Mater. Sci. Lett. 17, 1059 (1998).Google Scholar
12. Sorescu, M., Diamandescu, L., Grabias, A., Mater. Chem. Phys. 83, 354 (2004).Google Scholar
13. Sorescu, M., A Grabias, Mater. Lett. 57, 2174 (2003).Google Scholar
14. Rath, C., Sahu, K. K., Anand, S., Date, S. K., Mishra, N. C., and Das, R.P., J. Magn. Magn. Mater. 20, 77 (1998).Google Scholar