Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-23T16:57:50.317Z Has data issue: false hasContentIssue false

Hydrothermal Synthesis of Nanorods/Nanoparticles TiO2 for Photocatalytic Activity and Dye-sensitized Solar Cell Applications

Published online by Cambridge University Press:  01 February 2011

Sorapong Pavasupree
Affiliation:
[email protected], Institute of Advanced Energy, Kyoto University, Molecular Assemblies Design Research Section, Gokasho, Uji, 611-0011, Japan, +81-774-38-3504, +81-774-38-3508
Supachai Ngamsinlapasathian
Affiliation:
[email protected], Institute of Advanced Energy, Kyoto University, Uji, Kyoto, 611-0011, Japan
Yoshikazu Suzuki
Affiliation:
[email protected], Institute of Advanced Energy, Kyoto University, Uji, Kyoto, 611-0011, Japan
Susumu Yoshikawa
Affiliation:
[email protected], Institute of Advanced Energy, Kyoto University, Uji, Kyoto, 611-0011, Japan
Get access

Abstract

Nanorods/nanoparticles TiO2 with mesoporous structure were synthesized by hydrothermal method at 150 °C for 20 h. The samples characterized by XRD, SEM, TEM, SAED, HRTEM, and BET surface area. The nanorods had diameter about 10-20 nm and the lengths of 100-200 nm, the nanoparticles had diameter about 5-10 nm. The prepared material had average pore diameter about 7-12 nm. The BET surface area and pore volume of the sample are about 203 m2/g and 0.655 cm3/g, respectively. The nanorods/nanoparticles TiO2 with mesoporous structure showed higher photocatalytic activity (I3 concentration) than the nanorods TiO2, nanofibers TiO2, mesoporous TiO2, and commercial TiO2 (ST-01, P-25, JRC-01, and JRC-03). The solar energy conversion efficiency (η) of the cell using nanorods/nanoparticles TiO2 with mesoporous structure was about 7.12 % with Jsc of 13.97 mA/cm2, Voc of 0.73 V and ff of 0.70; while η of the cell using P-25 reached 5.82 % with Jsc of 12.74 mA/cm2, Voc of 0.704 V and ff of 0.649.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Rao, C. N. R., and Nath, M., Dalton Trans., 1, 1 (2003).Google Scholar
2. Patzke, G. R., Krumeich, F., and Nesper, R., Angew. Chem. Int. Ed. 41, 2446 (2002).Google Scholar
3. Suzuki, Y., Pavasupree, S., Yoshikawa, S. and Kawahata, R., J. Mater. Res., 20, 1063 (2005).Google Scholar
4. Pavasupree, S., Suzuki, Y., Yoshikawa, S. and Kawahata, R., J. Solid State Chem., 178, 3110 (2005).Google Scholar
5. Suzuki, Y., Ngamsinlapasathian, S., Yoshida, R., and Yoshikawa, S., Central Euro. J. Chem., 4, 476 (2006).Google Scholar
6. Pavasupree, S., Ngamsinlapasathian, S., Nakajima, M., Suzuki, Y., and Yoshikawa, S., J. Photochem. Photobio. A: Chem., (2006) (in press).Google Scholar
7. Pavasupree, S., Suzuki, Y., Pivsa-Art, S., and Yoshikawa, S., Ceram. Int., 31, 959 (2005).Google Scholar
8. Sakulkhaemaruethai, S., Pavasupree, S., Suzuki, Y., Yoshikawa, S., Mater. Lett., 59, 2965 (2005).Google Scholar
9. Sreethawong, T., Suzuki, Y., and Yoshikawa, S., J. Solid State Chem., 178, 329 (2005).Google Scholar