Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-25T18:04:03.189Z Has data issue: false hasContentIssue false

Hydrogen-related local vibrational modes in GaN:Mg grown by molecular beam epitaxy

Published online by Cambridge University Press:  01 February 2011

D. Pastor
Affiliation:
Institut Jaume Almera (CSIC), C. Lluís Solé i Sabarís s.n., 08028 Barcelona, Spain.
R. Cuscó
Affiliation:
Institut Jaume Almera (CSIC), C. Lluís Solé i Sabarís s.n., 08028 Barcelona, Spain.
L. Artus
Affiliation:
Institut Jaume Almera (CSIC), C. Lluís Solé i Sabarís s.n., 08028 Barcelona, Spain.
F. Naranjo
Affiliation:
ISOM and Departamento de Ingeniería Electrónica, ETSI Telecomunicación, Universidad Politécnica, Ciudad Universitaria, 28040 Madrid, Spain.
E. Calleja
Affiliation:
ISOM and Departamento de Ingeniería Electrónica, ETSI Telecomunicación, Universidad Politécnica, Ciudad Universitaria, 28040 Madrid, Spain.
Get access

Abstract

We report a Raman scattering study of local vibrational modes (LVMs) on Mg-doped GaN grown by molecular beam epitaxy (MBE). Besides Mg:Ga local vibrational modes clearly observed at 262 and 565 cm−1, several peaks were detected in the spectral regions around 2200 cm−1 and 2900 cm−1. The modes in the 2200 cm−1 spectral region correspond to local modes of hydrogen complexes and hydrogen-decorated defects, and indicate the presence of a fairly high concentration of H in the samples. The peaks observed in the 2900 cm−1 region are assigned to carbon-hydrogen local modes and are indicative of the presence of C impurities in the samples. These measurements show that both C and H impurities may be present in sizable amounts not only in metal-organic chemical vapor deposition (MOCVD) samples but also in MBE grown samples, and this may have an effect on the electrical conductivity ofp-type GaN:Mg samples.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Harima, H., J. Phys. Condens. Matter 14, R967 (2002).Google Scholar
[2] Harima, H., Inoue, T., Nakashima, S., Ishida, M., and Taneya, M., Appl. Phys. Lett. 75, 1383 (1999).Google Scholar
[3] Kaschner, A., Siegle, H., Kaczmarczyk, G., Strassburg, M., Hoffmann, A., and Thomsen, C., Appl. Phys. Lett. 74 (1999).Google Scholar
[4] Kaczmarczyk, G., Kaschner, A., Hoffmann, A., and Thomsen, C., Phys. Rev. B 61, 5353 (2000).Google Scholar
[5] Azuhata, T., Sota, T., Suzuki, K., Nakamura, S., J. Phys. Condens. Matter 7, L129 (1995).Google Scholar
[6] Yi, G.-C. and Wessels, B. W., Appl. Phys. Lett. 70, 357 (1997).Google Scholar
[7] Foxon, C. T., Harrison, I., Novikov, S. V., Li, T., Campion, R. P., Staddon, C. R., Davis, C. S., Winser, A. J., Kovarsky, A. P., Ber, B. Ja., J. Crystal Growth 234, 343 (2002).Google Scholar
[8] Brandt, M. S., Ager, J. W. III, Götz, W., Johnson, N. M., Harris, J. S. Jr, Molnar, R. J., and Moustakas, T. D., Phys. Rev. B 49, 14758 (1994).Google Scholar
[9] Götz, W., Johnson, N. M., Bour, D. P., McCluskey, M. D., and Haller, E. E., Appl. Phys. Lett. 69, 3725 (1996).Google Scholar
[10] Manasreh, M. O., Baranowski, J. M., Pakula, K., Jiang, H. X., and Lin, J., Appl. Phys. Lett. 75, 659 (1998).Google Scholar