Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-29T07:49:03.112Z Has data issue: false hasContentIssue false

Hydrogen-Induced Metastability of Polycrystalline Silicon

Published online by Cambridge University Press:  26 February 2011

N. H. Nickel*
Affiliation:
Xerox Palo Alto Research Center, 3333 Coyote Hill Road, Palo Alto, California 94304
Get access

Abstract

The presence of H in polycrystalline silicon gives rise to new and hitherto unexpected phenomena. In this paper two of the most recent observations are reviewed: (i) Hydrogen-induced metastable changes of the dark conductivity due to the formation and dissociation of an electrically active H complex and (ii) the generation of acceptor states during prolonged exposure of poly-Si to monatomic H at elevated temperatures. The observed type conversion is clearly due to the diffusion of excess H from the plasma since it does not occur during exposure to other species such as oxygen.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Johnson, N.M., Biegelsen, D.K., and Moyer, M.D., Appl. Phys. Lett. 40, 882 (1982).Google Scholar
2 Mimura, A., Konishi, N., Ono, K., Ohwada, J.-I., Hosokawa, Y., Ono, Y. A., Suzuki, T., Miyata, K., and Kawakami, H., EEEE Trans. Electron Devices 36, 351 (1989).Google Scholar
3 Kamins, T. J. and Marcoux, P. J., IEEE Electron Device Lett. EDL–1, 159 (1980).Google Scholar
4 Jackson, W. B., Johnson, N.M., and Biegelsen, D.K., Appl. Phys. Lett. 43, 195 (1983).Google Scholar
5 Nickel, N. H., Johnson, N.M., and Jackson, W. B., Appl. Phys. Lett. 62, 3285 (1993).Google Scholar
6 Nickel, N.H., Johnson, N.M., and Van de Walle, C.G., Phys. Rev. Lett. 72, 3393 (1994).Google Scholar
7 Nickel, N. H., Jackson, W. B., and Johnson, N.M., Phys. Rev. Lett. 71, 2733 (1993).Google Scholar
8 Gorelkinskii, Y.V. and Nevinnyi, N.N., Sov. Tech. Phys. Lett. 13, 45 (1987).Google Scholar
9 Holm, B., Bonde Nielsen, K., and Bech Nielsen, B., Phys. Rev. Lett. 66, 2360 (1991).Google Scholar
10 Van de Walle, C.G., Denteneer, P.J.H., Bar-Yam, Y., and Pantelides, S. T., Phys. Rev. B 39, 10791 (1989).Google Scholar
11 Tanielian, M., Phil. Mag. B 45, 435 (1982).Google Scholar
12 Mott, N.F., J. Non-Cryst. Solids 1, 1 (1968).Google Scholar
13 Chang, K.J. and Chadi, D. J., Phys. Rev. Lett. 62, 937 (1989).Google Scholar
14 Johnson, N.M., Ponce, F.A., Street, R.A., and Nemanich, R. J., Phys. Rev. B 35, 4166 (1987).Google Scholar
15 Tarnow, E., Dallot, P., Bristowe, P.D., Joannopoulos, J.D., Francis, G.P., and Payne, M. C., Phys. Rev. B 42, 3644 (1990).Google Scholar
16 Van de Walle, C.G. and Nickel, N. H., Phys. Rev. B 51, 2636 (1995).Google Scholar
17 Van Wieringen, A. and Warmoltz, N., Physica (Utrecht) 22, 849 (1956).Google Scholar
18 Nickel, N.H., Jackson, W.B., and Walker, J., submitted for publication.Google Scholar
19 Zellama, K., Germain, P., Squelard, S., Bourdon, B., Fontenille, J., and Danielou, R., Phys. Rev. B 23, 6648 (1981).Google Scholar