Published online by Cambridge University Press: 01 February 2011
We carried out molecular dynamics simulations with Tersoff-Brenner potentials in order to investigate the hydrogen uptake mechanisms and storage capacity of carbon nanoscrolls (CNSs). CNSs are jelly roll-like structures formed by wrapping graphene layers. Interlayer adsorption is an option for this material, which does not exist for single and multiwalled carbon nanotubes. We analyzed the processes of hydrogen physisorption and uptake mechanisms. We observed incorporation of hydrogen molecules in both external and internal scroll surfaces. Insertion in the internal cavity and between the scroll layers is responsible for 40% of the total hydrogen adsorption at 77 K.