Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-27T02:02:30.413Z Has data issue: false hasContentIssue false

Hydrogen Storage in Carbon Nanoscrolls: A Molecular Dynamics Study

Published online by Cambridge University Press:  01 February 2011

Vitor Coluci*
Affiliation:
[email protected], State University of Campinas, Applied Physics Department, Applied Physics,, State University of Campinas,, 13083-970 Campinas-SP-Brazil, Campinas, SP, 6165, Brazil
Scheila F. Braga
Affiliation:
Ray H. Baughman
Affiliation:
[email protected], United States
Douglas S. Galvão
Affiliation:
*
* Corresponding author: [email protected] FAX: +551937885376
Get access

Abstract

We carried out molecular dynamics simulations with Tersoff-Brenner potentials in order to investigate the hydrogen uptake mechanisms and storage capacity of carbon nanoscrolls (CNSs). CNSs are jelly roll-like structures formed by wrapping graphene layers. Interlayer adsorption is an option for this material, which does not exist for single and multiwalled carbon nanotubes. We analyzed the processes of hydrogen physisorption and uptake mechanisms. We observed incorporation of hydrogen molecules in both external and internal scroll surfaces. Insertion in the internal cavity and between the scroll layers is responsible for 40% of the total hydrogen adsorption at 77 K.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Dillon, A. C., Jones, K. M., Bekkedahl, T. A., Kalng, C. H., Bethune, D. S., and Heben, M. J., Nature 386, 377 (1997).Google Scholar
2. Baughman, R. H., Zakhidov, A. A., and de Heer, W. A., Science 297, 787 (2002).Google Scholar
3. Schlapbach, L. and Zuttel, A., Nature 414, 353 (2001).Google Scholar
4. Chambers, A., Park, C., Terry, R., Baker, K., and Rodriguez, N. M., J. Phys. Chem. B 102, 4253 (1998).Google Scholar
5. Ye, Y., Ahn, C. C., Witham, C., Fultz, B., Liu, J., Rinzler, A. G., Colbert, D., Smith, K. A., and Smalley, R. E., Appl. Phys. Lett. 74, 2307 (1999).Google Scholar
6. Liu, C., Fan, Y. Y., Liu, M., Cong, H. T., Cheng, H. M., and Dresselhaus, M. S., Science 286, 1127 (1999).Google Scholar
7. Chen, P., Wu, X., Lin, J., and Tan, K. L., Science 285, 91 (1999).Google Scholar
8. Yang, R. T., Carbon 38, 623 (2000).Google Scholar
9. Rzepka, M., Lamp, P., and de La Casa-Lillo, M. A., J. Phys. Chem. B 102, 10894 (1998).Google Scholar
10. Wang, Q. and Johnson, J. K., J. Chem. Phys. 110, 577 (1999).Google Scholar
11. Willians, K. A. and Eklund, P. C., Chem. Phys. Lett. 320, 352 (2000).Google Scholar
12. Darkrim, F. L. and Levesque, D., J. Phys. Chem. B 104, 6773 (2000).Google Scholar
13. Gu, C., Gao, G-Hua, Yu, Y-Xin, and Mao, Z-Qiang, Int. J. Hydrogen Energy 26, 691 (2001).Google Scholar
14. Darkrim, F. L., Malbrunot, P., and Tartaglia, G. P., Int. J. Hydrogen Energy 27, 193 (2002).Google Scholar
15. Levesque, D., Gicquel, A., Darkrim, F. L., and Kayiran, S. B., J. Phys.: Condens. Matter 14, 9285 (2002).Google Scholar
16. Guay, P., Stansfield, B. L., and Rochefort, L., Carbon 42, 2187 (2004).Google Scholar
17. Ma, Y., Xia, Y., Zhao, M., Wang, R., and Mei, L., Phys. Rev. B 63, 115422 (2001).Google Scholar
18. Ma, Y., Xia, Y., Zhao, M., and Ying, M., Phys. Rev. B 65, 155430 (2002).Google Scholar
19. Lee, S. M. and Lee, Y. H., Appl. Phys. Lett. 76, 2877 (2000).Google Scholar
20. Lee, S. M., An, K. H., Lee, Y. H., Seifert, G., and Frauenheim, T., J. Am. Chem. Soc. 123, 5059 (2001).Google Scholar
21. Cheng, H. M., Yang, Q-Hong, and Liu, C., Carbon 39, 1447 (2001).Google Scholar
22. Zuttel, A., Sudan, P., Mauron, Ph., Kiyobayashi, T., Emmenegger, Ch., and Schlapbach, L., Int. J. Hydrogen Energy 27, 203 (2002).Google Scholar
23. Viculis, L. M., Mack, J. J., and Kaner, R. B., Science 299, 1361 (2003).Google Scholar
24. Braga, S. F., Coluci, V. R., Legoas, S. B., Giro, R., Galvão, D. S., and Baughman, R. H., Nano Lett. 4, 881 (2004).Google Scholar
25. Brenner, D. W., Phys. Rev. B 42, 9458 (1990).Google Scholar
26. Brenner, D. W., Shenderova, O. A., Harrison, J. A., Stuart, S. J., Ni, B., and Sinnott, S. B., J. Phys.: Condens. Matter 14, 783 (2002).Google Scholar
27. Mowrey, R. C., Brenner, D. W., Dunlap, B. I., Mintmire, J. W., and White, C. T., J. Chem. Phys. 95, 7138 (1991).Google Scholar
28. Chang, S-P., Chen, G., and Gong, X.G., Phys. Rev. Lett. 87, 205502 (2001).Google Scholar
29. Mao, Z., Garg, A., and Sinnott, S. B., Nanotechnology 10, 273 (1999).Google Scholar
30. UFF-Universal 1.02 Molecular Force Field, available from Accelrys, Inc. in Cerius2 program http://www.accelrys.com Google Scholar
31. Berendsen, H. J. C., Postma, J. P. M., Vangunsteren, W. F., Dinola, A., and Haak, J. R., J. Chem. Phys. 81, 3684 (1984).Google Scholar
32. Hu, Y. and Sinnot, S. B., J. Comput. Phys. 200, 251 (2004).Google Scholar
33. Enoki, T., Miyajima, S., Sano, M., and Inokuchi, H., J. Mater. Res. 5, 435 (1990)Google Scholar
34. Challet, S., Azais, P., Pellenq, R.J.-M., Isnard, O., Soubeyroux, J.-L., and Duclaux, L., J. Physics and Chemistry of Solids 65, 541 (2004).Google Scholar