Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-23T12:38:04.894Z Has data issue: false hasContentIssue false

Hydrogen Production from Ethanol. Comparing Thermal Catalytic Reactions to Photo-catalytic Reactions.

Published online by Cambridge University Press:  18 July 2011

M. Scott
Affiliation:
Department of Chemistry, University of Auckland, Auckland, New Zealand
A.M. Nadeem
Affiliation:
Department of Chemistry, University of Auckland, Auckland, New Zealand
G.I.W. Waterhouse
Affiliation:
Department of Chemistry, University of Auckland, Auckland, New Zealand
H. Idriss*
Affiliation:
Department of Chemistry, University of Aberdeen, Aberdeen, UK
*
*Corresponding author: [email protected]
Get access

Abstract

Hydrogen production from renewables such as bio-ethanol is one of the most promising processes for energy carriers in a sustainable way. In this work we review and compare two catalytic systems: one based on thermal activation over bimetallic catalysts (Rh-Pd/CeO2) and the other over photo-excited semiconductor catalysts (Au/TiO2 anatine, rutile and anatase/rutile). It is found that the hydrogen yield is far higher on the thermally activated catalysts (at 773K) when compared to that of the photo-exited catalysts (at room temperature); about 60 times. However, the photo-excited catalysts are a promising way to create a fully sustainable system for future applications if the complete removal of hydrogen atoms from water and ethanol are obtained at room temperature.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Domínguez, M., Taboada, E., Idriss, H., Molins, E., Llorca, J., J Mater. Chem. 20, 4875 (2010).10.1039/c0jm00184hGoogle Scholar
2. Scott, M., Idriss, H., Handbook of Green Chemistry - Green Catalysis, Volume 1, Chapter 10, Editors Anstis, and Crabtree, , ISBN-10: 3-527-31577-2 (2009).Google Scholar
3. Scott, M., Goeffroy, M., Chiu, W., Blackford, M.A., Idriss, H., Topics in Catal. 51, 39 (2008).10.1007/s11244-008-9125-9Google Scholar
4. Idriss, H., Scott, M., Llorca, J., Chan, S. C., Chiu, W., Sheng, P. Y., Yee, A., Blackford, M. A., Pas, S. J., Hill, A. J., Alamgir, F. M., Rettew, R., Petersburg, C., Senanayake, S., Barteau, M.A., ChemSusChem. 1, 905 (2008).10.1002/cssc.200800196Google Scholar
5. Karim, A.M., Su, Y., Sun, J., Yang, C., Strohma, J.J., King, D.L., Wang, Y., Appl. Catal. B: Environmental 96, 441 (2010).10.1016/j.apcatb.2010.02.041Google Scholar
6. Ni, M., Leung, D.Y.C., Leung, M.K.H., Inter. J. Hydrogen Energy 32, 3238 (2007).10.1016/j.ijhydene.2007.04.038Google Scholar
7. Zhang, B.C., Tang, X.L., Li, Y., Xu, Y.D., Shen, W.J., Inter. J. Hydrogen Energy 32, 2367 (2007).10.1016/j.ijhydene.2006.11.003Google Scholar
8. Zhang, B.C., Tang, X.L., Li, Y., Cai, W.J., Xu, Y.D., Shen, W.J., Catal. Commun. 7, 367 (2006).10.1016/j.catcom.2005.12.014Google Scholar
9. Idriss, H., Platinum Metals Review 48, 105 (2004).10.1595/147106704X1603Google Scholar
10. Diagne, C., Idriss, H., Pearson, K., Gómez-García, M.A., Kiennemann, A., Comptes Rendus Chimie 7, 617 (2004).10.1016/j.crci.2004.03.004Google Scholar
11. Nadeem, M.A., Murdoch, M., Waterhouse, G.I.N., Metson, J.B., Keane, M.A., Llorca, J., Idriss, H., J. PhotoChem & PhotoBio A: Chemicals, 216, 250 (2010)10.1016/j.jphotochem.2010.07.007Google Scholar
12. Hugon, A., Delannoy, L., Louis, C., Gold Bulletin 41, 127 (2008).10.1007/BF03216590Google Scholar
13. Waterhouse, G.I.N., Waterland, M.R., Polyhedron 26, 356 (2007)10.1016/j.poly.2006.06.024Google Scholar
14. Idriss, H., Diagne, C., Hindermann, J.P., Kiennemann, A., Barteau, M.A.. J. Catal. 155, 219 (1995).10.1006/jcat.1995.1205Google Scholar
15. Jayaweera, P. M., Quah, E. L., Idriss, H., J. Phys. Chem. C 111, 1764 (2007).10.1021/jp0657538Google Scholar
16. Yee, A., Morrison, S.J., Idriss, H., Catal. Today, 63, 327 (2000).10.1016/S0920-5861(00)00476-4Google Scholar
17. Jones, G.S., Mavrikakis, M., Barteau, M.A., Vohs, J.M., J. Am. Chem. Soc. 120, 3196 (1998)10.1021/ja973609hGoogle Scholar
18. Chen, H.-L., Liu, S.-H., Ho, J.-J., J. Phys. Chem. B 110, 14816 (2006).10.1021/jp0610259Google Scholar
19. Nadeem, M.A., Murdoch, M., Waterhouse, G.I.N., Metson, J.B., Keane, M.A., Llorca, J., Idriss, H., J. PhotoChem & PhotoBio A: Chemicals, 216, 250 (2010)10.1016/j.jphotochem.2010.07.007Google Scholar
20. Yang, Y.Z., Chang, C.-H., Idriss, H., Appl. Catal. B: Environmental 67, 217 (2006).10.1016/j.apcatb.2006.05.007Google Scholar
21. Chen, M., Goodman, D.W., Chem. Soc. Rev. 37, 1860 (2008).10.1039/b707318fGoogle Scholar
22. Bamwenda, G.R., Tsubota, S., Nakamura, T., Haruta, T., , M. J. Photochem. Photobiol. A 89, 177 (1995).10.1016/1010-6030(95)04039-IGoogle Scholar
23. Wilson, J.N., Idriss, H., J. Am. Chem. Soc. 124, 11284 (2002).10.1021/ja027155mGoogle Scholar
24. Xu, M., Gao, Y., Moreno, E.M., Kunst, M., Muhler, M., Wang, Y., Idriss, H., Wöll, C., Phys. Rev. Lett. 106, 138302 (2011).10.1103/PhysRevLett.106.138302Google Scholar
25. Murdoch, M., Waterhouse, G.W.N., Nadeem, M.A., Keane, M.A., Howe, R.F., Llorca, J., Idriss, H., Nature Chemistry doi:10.1038/nchem.1048. Google Scholar