Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-27T01:34:51.819Z Has data issue: false hasContentIssue false

Hydrogen Passivation of Si Nanocrystals in Silica

Published online by Cambridge University Press:  21 March 2011

Stephanie Cheylan
Affiliation:
Electronic Materials Engineering Department, Research School of Physical Sciences and Engineering, Australian National University, Canberra, ACT 0200, Australia
Robert G. Elliman
Affiliation:
Electronic Materials Engineering Department, Research School of Physical Sciences and Engineering, Australian National University, Canberra, ACT 0200, Australia
Get access

Abstract

This paper explores the effect of hydrogen on the luminescence properties of silicon nanocrystals formed in silica by high-dose ion-implantation and thermal annealing. For samples implanted to low fluence (small nanocrystals), passivation is shown to result in a uniform enhancement of the PL emission for all wavelengths. However, for samples implanted to high fluence, preferential enhancement of the emission from larger nanocrystals is evident, resulting in a red-shift of emission spectra. Both the intensity enhancement and the red-shift are shown to be reversible, with spectra returning to their pre-passivation form when H is removed from the samples by annealing. The luminescence lifetime is also shown to increase after passivation, confirming that defect-containing nanocrystals luminesce.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. S-Iwayama, T., Fujita, K., Akai, M., Nakao, S., Saitoh, K., J. Non Cryst. Solids 187, 112 (1998)Google Scholar
2. White, C. W., Budai, J. D., Withrow, S. P., Zhu, J. G., Pennycook, S. J., Zuhr, R. A., Hembree, D. M. Jr, Henderson, D. O., Magruder, R. H., Yacaman, M. J., G., , , Mondragon, Prawer, S., Nucl. Instr. Meth B127/128 (1997)Google Scholar
3. Iacona, F., Franzo, G., Spinella, C., J. Appl. Phys. 87, 1295 (2000)Google Scholar
4. Zhu, M, Han, Y, Wehrspohn, R. B., Godet, C., Etemadi, R., Ballutaud, D., J. Appl. Phys. 83, 5386 (1998)Google Scholar
5. Kim, H. B., Kim, T. G., Son, J. H., Whang, C. N., Chae, K. H., Lee, W. S., Im, S., Song, J. H., J. Appl. Phys. 88, 1851 (2000)Google Scholar
6. Fink, D., Krauser, J., Nagengast, D., Murphy, T. Almeida, Erxmeier, J., Palmetshofer, L., Bräunig, D., Weidinger, A., Appl. Phys. A61, 381 (1995)Google Scholar
7. Brower, K. L., Phys. Rev. B38, 9657 (1988)Google Scholar
8. Stesmans, A., Gorp, G. Van, Appl. Phys. Lett. 57, 2663 (1990)Google Scholar
9. Panzarini, G., Colombo, L., Phys. Rev. Lett. 73, 1636 (1994)Google Scholar
10. Min, K. S., Shcheglov, K. V., Yang, C. M., Atwater, H. A., Brongersma, M. L., Polman, A., Appl. Phys. Lett. 69, 2033 (1996)Google Scholar
11. Withrow, S. P, White, C. W., Meldrum, A., Budai, J. D., Hembree, D. M. Jr, Barbour, J. C., J. Appl. Phys. 86, 1 (1999)Google Scholar
12. Neufeld, E., Wang, S., Aetz, R., Buchal, Ch., Carius, R., White, C. W. and Thomas, D. K., Thin Solid Films 294, 238 (1997)Google Scholar
13. Cheylan, S., Elliman, R. G., Appl. Phys. Lett. (In Press) (2001)Google Scholar
14. Cheylan, S., Elliman, R. G., Appl. Phys. Lett. (In Press) (2001)Google Scholar
15. Pavesi, L., J. Appl. Phys. 80, 216 (1996)Google Scholar