Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-16T17:25:32.371Z Has data issue: false hasContentIssue false

Hydrogen Passivation of GaAs:C Epitaxial Layers Grown from Metalorganic Sources

Published online by Cambridge University Press:  26 February 2011

Michael Stavola
Affiliation:
Physics Department, Lehigh University, Bethlehem, PA 18015
D. M. Kozuch
Affiliation:
Physics Department, Lehigh University, Bethlehem, PA 18015
C. R. Abernathy
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
W. S. Hobson
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
Get access

Abstract

Carbon is readily incorporated into epitaxial GaAs and related alloys grown from metalorganic sources. Hydrogen is also readily incorporated during growth and processing from essentially every possible source including the metalorganics, AsH3, and H2 that are used during growth or in annealing ambients. This hydrogen forms stable neutral complexes with carbon thereby altering the intended p-type doping. In this paper, the properties of the C-H complexes as well as the sources of hydrogen, the stability of passivation, and the concentration of C-H complexes in epitaxial layers will be discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Abernathy, C. R., Pearton, S. J., Ren, F., Hobson, W. S., Fullowan, T. R., Katz, A., Jordon, A. S., and Kovalchick, J., J. Cryst. Growth 105, 375 (1990) and the references contained therein.CrossRefGoogle Scholar
2. Kuech, T. F., Tischler, M. A., Wang, P. -J., Scilla, G., Potemski, R. and Cardone, F., Appl. Phys. Lett. 53 1317 (1988).CrossRefGoogle Scholar
3. Cunningham, B. T., Guido, L. J., Baker, J. E., Major, J. S., Holonyak, N., and Stillman, G. E., Appl. Phys. Lett. 55, 687 (1989).CrossRefGoogle Scholar
4. Konagai, M., Yamada, T., Akatsuka, T., Saito, K., Tokumitsu, E., and Takahashi, K., J. Cryst. Growth 98, 167 (1989).CrossRefGoogle Scholar
5. Kozuch, D. M., Stavola, M., Pearton, S. J., Abernathy, C. R., and Lopata, J., Appl. Phys. Lett. 57, 2561 (1990).CrossRefGoogle Scholar
6. Veloarisoa, I. A., Kozuch, D. M., Stavola, M., Peale, R. E., Watkins, G. D., Pearton, S. J., Abernathy, C. R., and Hobson, W. S., Defects in Semiconductors 16, ed. Davies, G., DeLeo, G. G., and Stavola, M., (Trans Tech, Switzerland, 1992), p. 111.Google Scholar
7. Woodhouse, K., Newman, R. C., de Lyon, T. J., Woodall, J. M., Scilla, G. J., and Cordone, F., Semicond. Sci. Technol. 6, 330 (1991).CrossRefGoogle Scholar
8. Woodhouse, K., Newman, R. C., Nicklin, R. and Bradley, R. R., in Proc. ICCBE-3, to be published in J. Cryst. Growth.Google Scholar
9. Pan, M., Bose, S. S., Kim, M. H., Stillman, G. E., Chambers, F., Devane, G., Ito, C. R., and Feng, M., Appl. Phys. Lett. 51, 596 (1987).CrossRefGoogle Scholar
10. Clerjaud, B., Hydrogen in Semiconductors, ed. Stutzmann, M. and Chevallier, J., (North Holland, Amsterdam, 1991) p. 383CrossRefGoogle Scholar
11. See Chapt. 10, Pearton, S. J., Corbett, J. W., and Stavola, M., Hydrogen in Crystalline Semiconductors, (Springer-Verlag, Heidelberg, 1992).CrossRefGoogle Scholar
12. Clerjaud, B., Gendron, F., Krause, M., and Ulrici, W., Phys. Rev. Lett. 65, 1800 (1990).CrossRefGoogle Scholar
13. Clerjaud, B., Cote, D., Gendron, F., Hahn, W -S., Krause, M., Porte, C., and Ulrici, W., in ref. 6, p. 563.Google Scholar
14. Jones, R. and Oberg, S., Phys. Rev. B 44, 3673 (1991).CrossRefGoogle Scholar
15. Svob, L., Grattepain, C., and Marfaing, Y., Appl. Phys. A 47, 309 (1988).CrossRefGoogle Scholar
16. Svob, L. and Marfaing, Y., Shallow Impurities in Semiconductors, ed. Davies, G., (Trans Tech, Switzerland, 1991), p. 181.Google Scholar
17. Svob, L., Marfaing, Y., Desjonqueres, F. and Druilhe, R., in ref. 10, p. 550.Google Scholar
18. Abernathy, C. R., Bohling, D. A. and Jones, A. C., this volume.Google Scholar
19. Chin, T. P., Kirchner, P. D., Woodall, J. M., and Tu, C. W., Appl. Phys. Lett. 59, 2865 (1991).CrossRefGoogle Scholar
20. Hobson, W. S., Advanced Semiconductor Growth, Processing, and Devices, Fall MRS meeting, 1991.Google Scholar
21. Cole, S., Evans, J. S., Harlow, M. J., Nelson, A. W., and Wong, S., Electron. Lett. 24, 929 (1988).CrossRefGoogle Scholar
22. Anteil, G. R., Briggs, A. T. R., Butler, B. R., Chew, R. A., and Sykes, D. E., Appl. Phys. Lett. 53, 758 (1988).CrossRefGoogle Scholar
23. Clerjaud, B., Gendron, F., Krause, M., Naud, C., and Ulrici, W., in ref. 10, p. 417.Google Scholar
24. Zundel, T. and Weber, J., Phys. Rev. B 39, 13549 (1989).CrossRefGoogle Scholar
25. Pearton, S. J., Abernathy, C. R., Lopata, J., Appl. Phys. Lett., Dec. (1991).Google Scholar
26. Zavada, J. M., Jenkinson, H. A., Sarkis, R. G. and Wilson, R. G., J. Appl. Phys. 58, 3731 (1985).CrossRefGoogle Scholar
27. Chevalier, J.I. and Aucouturier, M., Ann. Rev. Mater. Sci. 18, 219 (1988).CrossRefGoogle Scholar
28. Raisanen, J., Keinonen, J., Darttunen, V., and Koponen, I., J. Appl. Phys. 64, 2334 (1988).CrossRefGoogle Scholar