Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-27T07:39:00.188Z Has data issue: false hasContentIssue false

Hydrogen Passivation of Er and Si Nanocrystallites in Er-doped SiO2 - Increase in Photoluminescence-

Published online by Cambridge University Press:  01 February 2011

N. Fukata
Affiliation:
Institute of Applied Physics, University of Tsukuba, Tsukuba 305–8573, Japan Special Research Project on Nanoscience, University of Tsukuba, Tsukuba 305–8573, Japan
C. Li
Affiliation:
Institute of Applied Physics, University of Tsukuba, Tsukuba 305–8573, Japan
H. Uematsu
Affiliation:
Institute of Applied Physics, University of Tsukuba, Tsukuba 305–8573, Japan
T. Arai
Affiliation:
Institute of Applied Physics, University of Tsukuba, Tsukuba 305–8573, Japan
T. Makimura
Affiliation:
Institute of Applied Physics, University of Tsukuba, Tsukuba 305–8573, Japan
K. Murakami
Affiliation:
Institute of Applied Physics, University of Tsukuba, Tsukuba 305–8573, Japan Special Research Project on Nanoscience, University of Tsukuba, Tsukuba 305–8573, Japan
Get access

Abstract

Hydrogen passivation effect on the enhancement of photoluminescence (PL) of Er ions in SiO2 films contained Si nanocrystallites (nc-Si) has been investigated. Er-doped SiO2 films were fabricated by laser ablation of Er-deposited Si substrate in oxygen gas atmosphere. The PL intensity of Er ions and nc-Si were increased by hydrogen gas treatments, while ESR signal intensity of residual defects located at the interfaces between nc-Si and SiO2 was decreased. These results indicate that hydrogen passivation of residual defects is useful for the enhancement of the Er PL.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Hommerich, U., Namavar, F., Cremins, A., and Bray, K. L., Appl. Phys. Lett. 68, 1951 (1996).Google Scholar
2. Fujii, M., Yoshida, M., Hayashi, S., and Yamamoto, K., J. Appl. Phys. 84, 4525 (1998).Google Scholar
3. Seo, S. and Shin, J. H., Appl. Phys. Lett. 75, 4070 (1999).Google Scholar
4. Brongersma, M. L., Kik, P. G., Polman, A., Min, K. S., and Atwater, H. A., Appl. Phys. Lett. 76, 351 (2000).Google Scholar
5. Kik, P. G., Brongersma, M. L., and Polman, A., Appl. Phys. Lett. 76, 2325 (2000).Google Scholar
6. Franzo, G., Vinciguerra, V., and Priolo, F., Appl. Phys. A: Mater. Sci. Process. 69, 3 (1999).Google Scholar
7. Li, C., Kondo, K., Makimura, T., and Murakami, K., Jpn. J. Appl. Phys. 42, 3424 (2003).Google Scholar
8. Makimura, T., Kondo, K., Uematsu, H., Li, C., and Murakami, K., Appl. Phys. Lett. 83, 5422 (2003).Google Scholar
9. Kenyon, A. J., Trwoga, P. F., Federighi, M., and Pitt, C. W., J. Phys.: Condens. Matter 6, L319 (1994).Google Scholar
10. Shin, J. H., van den Hoven, G. N., and Polman, A., Appl. Phys. Lett. 66, 2379 (1995).Google Scholar
11. Withrow, S. P., White, C. W., Meldrum, A., Budai, J. D., Hembree, D. M. Jr, and Barbour, J. C., J. Appl. Phys. 86, 396 (1999).Google Scholar
12. Polman, A., Jacobson, D. C., Eaglesham, D. J., Kistler, R. C., and Poate, J. M., J. Appl. Phys. 70, 3778 (1991).Google Scholar
13. Kocher-Oberlehner, G., Jantsch, W., Palmetshofer, L., and Ulyashin, A., Appl. Phys. Lett. 83, 623 (2003).Google Scholar
14. Chen, C. Y., Chen, W. D., Song, S. F., and Hsu, C. C., J. Cryst. Growth 253, 10 (2003).Google Scholar
15. Wilkinson, A. R. and Elliman, R. G., Phys. Rev. B 68, 155302 (2003).Google Scholar
16. Nishi, Y., Jpn. J. Appl. Phys. 10, 52 (1971).Google Scholar
17. Lenahan, P. M. and Conley, J. F. Jr, J. Vac. Sci. Technol. B 16, 2134 (1998).Google Scholar
18. Gosset, L. G., Ganem, J. J., von Bardeleben, H. J., Rigo, S., Trimaille, I., Cantin, J. L., Åkermark, T., and Vickridge, I. C., J. Appl. Phys. 85, 3661 (1999).Google Scholar
19. Brower, K. L., Phys. Rev. B 42, 3444 (1990).Google Scholar
20. Brower, K. L., Phys. Rev. B 38, 9657 (1988).Google Scholar
21. Stesman, A., J. Appl. Phys. 88, 489 (2000).Google Scholar