Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-27T01:57:23.913Z Has data issue: false hasContentIssue false

Hydrogen Incorporation in MPCVD Nanocrystalline Diamond Films During the Deposition Process

Published online by Cambridge University Press:  31 January 2011

Dominique Ballutaud
Affiliation:
Marie-Amandine Pinault
Affiliation:
[email protected], CNRS, GEMaC, Meudon, France
François Jomard
Affiliation:
[email protected], CNRS, GEMaC, Meudon, France
Alain Lusson
Affiliation:
[email protected], CNRS, GEMaC, Meudon, France
Samuel Saada
Affiliation:
[email protected], CEA, LIST, Gif-sur-Yvette, France
Get access

Abstract

Hydrogen incorporation is studied in two Microwave Plasma CVD nanocrystalline diamond films deposited with prolongated BIAS or not during the growth step. The hydrogen content and bonding forms are analysed by Secondary Ion Mass Spectrometry, Raman and Fourier Transformer Infrared Spectroscopy. Our results show a high hydrogen concentration up to 3.1021 cm-1, as expected in nanocrystalline diamond, and in good agreement with the sp2 phase rate measured by Raman spectroscopy . The FTIR spectra exhibit two sharp peaks at 2850 and 2920 cm-1 and show that a fraction of hydrogen is bonded to sp3 CH2 groups. Hydrogen desorption experiments are performed to analyse the local structure modification of the diamond films.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Ballutaud, D., Kociniewski, T., Vigneron, J., Simon, N. and Girard, H., Diamond and Relat. Mater. 17, 1127 (2008).Google Scholar
2 Barros, M. I. De, Serin, V., Vandenbucke, L., Botton, G., Andreazza, P. and Phaneufe, M. W., Diamond and Relat. Mater. 11, 1544 (2002).Google Scholar
3 Blumenau, A. T., Heggie, M. I., Fall, C. J., Jones, R., Frauenheim, T., Phys. Rev. B 65, 205205 (2002).Google Scholar
4 Goss, J. P., Jones, R., Heggie, M. I., Ewels, C. P., Briddon, P. R. and Öberg, S., Phys. Rev. B 65, 115207 (2002).Google Scholar
5 Ballutaud, D., Laroche, J.-M., Simon, N., Girard, H., Herlem, M., Mat. Res. Soc. Symp. Proc. 813, 105 (2004).Google Scholar
6 Ballutaud, D., Jomard, F., Theys, B., Mer, C., Tromson, D. and Bergonzo, P., Diamond and Relat. Mater. 10, 405 (2001).Google Scholar
7 Saada, S., Arnault, J.-C., Rocha, L., Bazin, B. and Bergonzo, P., Phys. Stat. Sol. (a) 9, 2121 (2008).Google Scholar
8 Ferrari, A. C. and Robertson, J., Phys. Rev. B 61, 14095 (2000).Google Scholar
9 Michaelson, S., Lifshitz, Y., Ternyak, O., Akhvlediani, R., and Hoffman, A., Diamond and Relat. Mater. 16, 845 (2007).Google Scholar
10 Ferrari, A. C. and Robertson, J., Phys. Rev. B 63, 121405 (2001).Google Scholar
11 Tang, C. J., Neves, A. J. and Fernandes, A. J. S., Diamond and Relat. Mater. 11, 527 (2002).Google Scholar
12 Tang, C. J., Neves, A. J. and Fernandes, A. J. S., Diamond and Relat. Mater. 12, 1488 (2003).Google Scholar