Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-28T09:13:06.306Z Has data issue: false hasContentIssue false

Hydrogen in Crystalline Silicon under Compression and Tension

Published online by Cambridge University Press:  25 February 2011

C.S. Nichols
Affiliation:
IBM Research Division, T. J. Watson Research Center, Yorktown Heights, NY 10598
D.R. Clarke
Affiliation:
IBM Research Division, T. J. Watson Research Center, Yorktown Heights, NY 10598
Get access

Abstract

The behavior of hydrogen in crystalline silicon (c-Si) containing regions of compressive or tensile stress is important for understanding the solute’s interaction with dislocations, grain boundaries, and crack tips. A series of first-principles total-energy calculations probing the stable site for hydrogen as a function of its charge state, the Fermi level position, and the crystalline lattice constant has been performed. We find that the stable site for hydrogen depends critically on both pressure and on the hydrogen charge state. Furthermore, hydrogen is predicted to undergo a transition from an interstitial site to the bond-center site as a function of pressure.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Pearton, S. J., Corbett, J. W., and Shi, T. S., Appl. Phys. A 43, 153 (1987).Google Scholar
2 Van de Walle, C. G., Bar-Yam, Y., and Pantelides, S. T., Phys. Rev. Lett., 60, 2761 (1988), K. J. Chang and D. J. Chadi, Phys. Rev. Lett., 62, 937 (1989), P. Deák, L. C. Snyder, and J. W. Corbett, Phys. Rev. B, 37, 6887 (1988), G. G. DeLeo, M. J. Dorogi, and W. B. Fowler, Phys. Rev. B, 38, 7520 (1988), and S. Estreicher, Phys. Rev. B, 36, 9122 (1987).Google Scholar
3 Nichols, C.S., Clarke, D.R., and Van de Walle, C.G., Phys. Rev. Lett. 63, 1090 (1989).Google Scholar
4 Hohenberg, P. and Kohn, W., Phys. Rev. 136, B864 (1964); W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965). The exhange and correlation potentials are based on work by D. M. Ceperley and B. J. Alder, Phys. Rev. Lett. 45, 566 (1980), as parametrized by J. Perdew and A. Zunger, Phys. Rev. B 23, 5048 (1981).Google Scholar
5 Hamann, D. R., Schlüter, M., and Chiang, C., Phys. Rev. Lett., 43, 1494 (1979).Google Scholar
6 Ihm, J., Zunger, A., and Cohen, M. L., J. Phys. C 12, 4409 (1979).Google Scholar
7 Bar-Yam, Y. and Joannopoulos, J. D., Phys. Rev. B 30, 1844 (1984).Google Scholar
8 Löwdin, P. O., J. Chem. Phys. 19, 1396 (1951).Google Scholar
9 Van de Walle, C. G., Denteneer, P. J. H., Bar-Yam, Y., and Pantelides, S. T., Phys. Rev. B, in publication.Google Scholar
10 Denteneer, P. J. H. and van Haeringen, W., Phys. Rev. B, 33, 2831 (1986).Google Scholar
11 Murnaghan, F. D., Proc. Nat. Acad. Sci. U.S.A. 30, 244 (1944).Google Scholar
12 The position of the defect level relative to the top of the valence band is calculated by finding the weighted average of the level over the special points.Google Scholar
13 Van de Walle, C. G., in Hydrogen in Semiconductors, edited by Pankove, J. I. and Johnson, N. M. (Academic Press), to be published.Google Scholar
14 Sec, for example, Srivastava, P. C. and Bourgoin, J. C., Grain Boundaries in Semiconductors, edited by Pike, , Seager, , and Leamy, (Elsevier, 1982), p. 137 and V. J. Rao, W. A. Anderson, and F. Kai, ibid, p. 227 and references therein.Google Scholar
15 Zhang, T-Y. and Haasen, P., Phil. Mag., 60, 15 (1989).Google Scholar
16 Schnegg, A., Grundner, M., and Jacob, H., in Semiconductor Silicon 1986, edited by Huff, H. R. (Electrochem. Soc, Pennington, NJ, 1986), p. 198.Google Scholar