Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-28T23:22:03.987Z Has data issue: false hasContentIssue false

Hydrogen Dynamics and Tee Distribution of H Sites in Undoped a-Si:H and a-Ge:H

Published online by Cambridge University Press:  21 February 2011

R. Shinar
Affiliation:
Microelectronics Research Center, Iowa State University, Ames, IA 50011
X.-L. Wu
Affiliation:
Ames Laboratory — USDOE and Physics Department, Iowa State University, Ames, IA 50011
S. Mitra
Affiliation:
Ames Laboratory — USDOE and Physics Department, Iowa State University, Ames, IA 50011
J. Shinar
Affiliation:
Ames Laboratory — USDOE and Physics Department, Iowa State University, Ames, IA 50011
Get access

Abstract

Secondary ion mass spectrometry and IR studies of long-range hydrogen motion in undoped a-Si:H and a-Ge:H of varying H content and microstructure are reviewed and discussed. In particular, their relation to the multiple trapping (MT) model, the role of microvoids, the significance of the Meyer-Neldel relation (MNR), and the nature of H sites is addressed. It is suggested that while the MT mechanism may be significant in a-Si:H of low H content Cfj, it is largely marginal in films where CH ≥ 10 at.% H and in a-Ge:H. Mono Si-H bonds on microvoid surfaces are apparently deep H trapping sites up to ∼ 400°C, but H is desorbed from such sites in a-Ge:H above 180°C. The MNR between the diffusional activation energy and prefactor is observed among the various a-Si:H and a-Ge:H, but its significance is questionable, and may be due to the MT mechanism only in low H content a-Si:H. The nature of the distribution of H sites is also discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Stutzmann, M., Jackson, W. B., and Tsai, C. C., Phys. Rev. B 32, 23 (1985);CrossRefGoogle Scholar
Stutzmann, M., Biegelsen, D. K., and Street, R. A., Phys. Rev. B 35, 5666 (1987).Google Scholar
2. Muller, G., Appl. Phys. A 45, 41 (1988).CrossRefGoogle Scholar
3. Kakalios, J., Street, R. A., and Jackson, W. B., Phys. Rev. Lett. 59, 1037 (1987).Google Scholar
4. Jackson, V. B., Phys. Rev. B 38, 3595 (1988).CrossRefGoogle Scholar
5. Jackson, W. B., Phys. Rev. B 41, 1059 (1990).Google Scholar
6. Street, R. A., Tsai, C. C., Kakalios, J., and Jackson, V. B., Phil. Mag. B 56, 305 (1987).Google Scholar
7. Shinar, J., Shinar, R., Wu, X.-L., Mitra, S., and Girvan, R. F., Phys. Rev. B 43, 1631 (1991).Google Scholar
8. Tang, X. M., Weber, J., Baer, Y., and Finger, F., Phys. Rev. B 41, 7945 (1990).CrossRefGoogle Scholar
9. Shinar, J., Shinar, R., Mitra, S., and Kim, J.-Y., Phys. Rev. Lett. 62, 2001 (1989).CrossRefGoogle Scholar
10. Tang, X. M., Weber, J., Baer, Y., and Finger, F., Phys. Rev. B 42, 7277 (1990).CrossRefGoogle Scholar
11. Vergnat, M., Houssaini, S., Daufour, C., Bruson, A., Marchal, G., Mangin, Ph., Erwin, R., Rhyne, J. J., and Vettier, C., Europhys. Lett. 14, 457 (1991).Google Scholar
12. Street, R. A., Phys. Rev. B 43, 2454 (1991).CrossRefGoogle Scholar
13. Beyer, W., in Tetrahedrally Bonded Amorphous Semiconductors, edited by Adler, D. and Fritzsche, H. (Plenum Press, NY, 1985), p. 129.CrossRefGoogle Scholar
14. Wu, X.-L., Shinar, R., and Shinar, J., Phys. Rev. B (submitted).Google Scholar
15. Crank, J., The Mathematics of Diffusion, (Clarendon Press, Oxford, England, 1975), chap. 2.Google Scholar
16. Cardona, M., Phys. Stat. Sol. B 118, 463 (1983).Google Scholar
17. Kirchheim, R. and Huang, X. Y., Phys. Stat. Sol. (b) 144, 253 (1987).Google Scholar
18. Albers, M. L., Shinar, J., and Shanks, H. R., J. Appl. Phys. 64, 1859 (1988)Google Scholar
19. Mahan, A. H., Williamson, D. L., Nelson, B. P., and Crandall, R. S., Phys. Rev. B 40, 12024 (1989).Google Scholar