Hostname: page-component-848d4c4894-sjtt6 Total loading time: 0 Render date: 2024-07-07T15:20:46.257Z Has data issue: false hasContentIssue false

Hydrogen Donors in ZnO

Published online by Cambridge University Press:  01 February 2011

M.D. McCluskey
Affiliation:
Department of Physics, Washington State University, Pullman, WA 99164-2814, U.S.A.
S.J. Jokela
Affiliation:
Department of Physics, Washington State University, Pullman, WA 99164-2814, U.S.A.
W.M. Hlaing Oo
Affiliation:
Department of Physics, Washington State University, Pullman, WA 99164-2814, U.S.A.
Get access

Abstract

Zinc oxide (ZnO) has shown great promise as a wide-bandgap semiconductor with a range of optical, electronic, and mechanical applications. The presence of compensating donors, however, is a major roadblock to achieving p-type conductivity. Recent first-principles calculations and experimental studies have shown that hydrogen acts as a shallow donor in ZnO, in contrast to hydrogen's usual role as a passivating impurity. Given the omnipresence of hydrogen during growth and processing, it is important to determine the structure and stability of hydrogen donors in ZnO.

To address these issues, we performed vibrational spectroscopy on bulk, single-crystal ZnO samples annealed in hydrogen (H2) or deuterium (D2) gas. Using infrared (IR) spectroscopy, we observed O-H and O-D stretch modes at 3326.3 cm-1 and 2470.3 cm-1 respectively, at a sample temperature of 10 K. These frequencies indicate that hydrogen forms a bond with a host oxygen atom, consistent with either an antibonding or bond-centered model. In the antibonding configuration, hydrogen attaches to a host oxygen and points away from the Zn-O bond. In the bond-centered configuration, hydrogen sits between the Zn and O. To discriminate between these two models, we measured the shift of the stretch-mode frequency as a function of hydrostatic pressure. By comparing with first-principles calculations, we conclude that the antibonding model is the correct one.

Surprisingly, we found that the O-H complex is unstable at room temperature. After a few weeks, the peak intensity decreases substantially. It is possible that the hydrogen forms H2 molecules, which have essentially no IR signature. Electrical measurements show a corresponding decrease in electron concentration, which is consistent with the formation of neutral H2 molecules. The correlation between the electrical and spectroscopic measurements, however, is not perfect. We therefore speculate that there may be a second “hidden” hydrogen donor. One candidate for such a donor is a hydrogen-decorated oxygen vacancy.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Johnson, N.M., Nurmikko, A.V., and DenBaars, S.P., Physics Today 53 (10), 31–6 (2000).Google Scholar
2 Powell, A.R. and Rowland, L.B., Proc. IEEE 90, 942–55 (2002).Google Scholar
3 Nakamura, S., Physica Status Solidi A 176, 1522 (1999).Google Scholar
4 Pearton, S.J. et al., Mat. Sci. Engin. B 82, 227–31 (2001).Google Scholar
5 Sugawara, Y., Mater. Sci. Forum 457-60, 963–8 (2004).Google Scholar
6 Ebert, W. and Kohn, E., Semicond. Sci. Tech. 18, S59–S66 (2003).Google Scholar
7 Czernetzki, R. et al., Physica Status Solidi A 200, 912 (2003).Google Scholar
8 Kim, J.H., Shepherd, N., Davidson, M., and Holloway, P.H., Appl. Phys. Lett. 83, 641–3 (2003). If a “bulk” GaN target is used, then sputter deposition of GaN is possible. However, bulk GaN is itself quite expensive, in contrast to ZnO.Google Scholar
9 Lendenmann, H., Bergman, J.P., Dahlquist, F., and Hallin, C., Mater. Sci. Forum 433, 901–6 (2002).Google Scholar
10 Koizumi, S., “N-type diamond growth,” Semiconductors and Semimetals 76, 239–59 (2003).Google Scholar
11 Pearton, S.J., Norton, D.P., Ip, K., Heo, Y.W., and Steiner, T., Journ. Vacuum Sci. Tech B 22, 932–48 (2004).Google Scholar
12 Look, D.C., Mater. Sci. Engin. B 80, 383–7 (2001).Google Scholar
13 Ntep, J.M., Hassani, S.S., Lusson, A., Tromson-Carli, A., Ballutaud, D., Didier, G., and Triboulet, R., Journ. Crystal Growth 207, 30–4 (1999).Google Scholar
14 Minami, T., MRS Bulletin 25 (8), 3844 (2000).Google Scholar
15 Nuruddin, A. and Abelson, J.R., Thin Solid Films 394, 4963 (2001).Google Scholar
16 Wager, J.F., Science 300, 1245–6 (2003).Google Scholar
17 Prinz, G.A., Science 282, 1660–3 (1998).Google Scholar
18 Dietl, T. and Ohno, H., MRS Bulletin 28 (10), 714–9 (2003).Google Scholar
19 Kamilla, S.K. and Basu, S., Bull. Mater. Sci. 25, 541–3 (2002).Google Scholar
20 Steane, A., Reports on Progress in Physics 61, 117–73 (1998).Google Scholar
21 Parkin, S., Jiang, X., Kaiser, C., Panchula, A., Roche, K., and Samant, M., Proceedings of the IEEE 91, 661–80 (2003).Google Scholar
22 Jonker, B.T., Park, Y.D., Bennett, B.R., Cheong, H.D., Kiosoglou, G., and Petrou, A., Phys. Rev. B 62, 8180–3 (2000).Google Scholar
23 Ohno, Y., Young, D.K., Beschoten, B., Matsukura, F., Ohno, H., and Awschalom, D.D., Nature 402, 790–2 (1999).Google Scholar
24 Kikkawa, J.M. and Awschalom, D.D., Nature 397, 139–41 (1999).Google Scholar
25 Fiederling, R., Keim, M., Reuscher, G., Ossau, W., Schmidt, G., Waag, A., and Molenkamp, L.W., Nature 402, 787–90 (1999).Google Scholar
26 Zutic, I., Fabian, J., and Sarma, S. Das, Phys. Rev. B 64, 121201 (2001).Google Scholar
27 Didosyan, Y.S., Hauser, H., Reider, G.A., and Toriser, W., J. Appl. Phys. 95, 7339–41 (2004).Google Scholar
28 Dietl, T., Ohno, H., Matsukura, F., Cibert, J., and Ferrand, D., Science 287, 1019–22 (2000).Google Scholar
29 Sharma, P., Gupta, A., Rao, K.V., Owens, F.J., Sharma, R., Ahuja, R., Guillen, J.M. Osorio, Johansson, Börje, and Gehring, G.A., Nature Materials 2, 673–7 (2003).Google Scholar
30 Mollwo, E., Z. Phys. 138, 478 (1954).Google Scholar
31 Thomas, D.G. and Lander, J.J., J. Chem. Phys. 25, 1136 (1956).Google Scholar
32 Walle, C.G. Van de, Phys. Rev. Lett. 85, 1012 (2000).Google Scholar
33 Cox, S.F.J., Davis, E.A., Cottrell, S.P., King, P.J.C., Lord, J.S., Gil, J.M., Alberto, H.V., Vilão, R.C., Duarte, J. Piroto, Ayres de Campos, N., Weidinger, A., Lichti, R.L., and Irvine, S.J.C., Phys. Rev. Lett. 86, 2601 (2001).Google Scholar
34 Hoffman, D.M., Hofstaetter, A., Leiter, F., Zhou, H., Henecker, F., Meyer, B.K., Orlinskii, S.B., Schmidt, J., and Baranov, P.G., Phys. Rev. Lett. 88, 045504 (2002).Google Scholar
35 McCluskey, M.D., Jokela, S.J., Zhuravlev, K.K., Simpson, P.J., and Lynn, K.G., Appl. Phys. Lett. 81, 3807 (2002).Google Scholar
36 and, M.D. McCluskey Jokela, S.J., in MRS Proc. Vol. 813, edited by Nickel, N.H., McCluskey, M.D., and Zhang, S.B. (Materials Research Society, PA, 2004).Google Scholar
37 Jokela, S.J., McCluskey, M.D., and Lynn, K.G., Physica B 340-342, 221 (2003).Google Scholar
38 Nickel, N.H. and Fleischer, K., Phys. Rev. Lett. 90, 197402 (2003).Google Scholar
39 Lavrov, E.V., Weber, J., Börrnert, F., Walle, C.G. Van de, Helbig, R., Phys. Rev. B 66, 165205 (2002).Google Scholar
40 Lavrov, E.V., Börrnert, F., and Weber, J., Phys. Rev. B 71, 035205 (2005).Google Scholar
41 Halliburton, L.E., Wang, L., Bai, L., Garces, N.Y., Giles, N.C., Callahan, M.J., Wang, B., J. Appl. Phys. 96, 7168 (2004).Google Scholar
48 Shi, G. Alvin, Saboktakin, M., Stavola, M., and Pearton, S.J., Appl. Phys. Lett. 85, 5601–3 (2004).Google Scholar
49 Loss, D. and DiVincenzo, D.P., “Quantum computation with quantum dots,” Phys. Rev. A 57, 120–6 (1998).Google Scholar
50 Gupta, J.A., Awschalom, D.D., Peng, X., and Alivisatos, A.P., “Spin coherence in semiconductor quantum dots,” Phys. Rev. B 59, R104214 (1999).Google Scholar
51 Mulvaney, P., “Optical properties of some nanocrystal doped glasses and polymers,” Glass Science and Technology 75, 310–8, Suppl. C1 (2002).Google Scholar
52 Elzerman, J.M., Hanson, R., Beveren, L.H. Willems van, Witkamp, B., Vandersypen, L.M.K., and Kouwenhoven, L.P., “Single-shot read-out of an individual electron spin in a quantum dot,” Nature 430, 431–5 (2004).Google Scholar
53 Hlaing, W.M. Oo, McCluskey, M.D., Lalonde, A.D., and Norton, M.G., Appl. Phys. Lett. 86, 073111 (2005).Google Scholar
54 Walle, C.G. Van de, private communication.Google Scholar