Published online by Cambridge University Press: 03 February 2011
Properties of hydrogenated icosahedral aluminum clusters were investigated using density functional theory in comparison with those of aluminum bulk systems. Two surface models simulating f.c.c. and icosahedral (111) surfaces were introduced. Results show that the H atom interacts weakly with surface of clusters when the cluster size is increased. The migration energy of H atom between neighboring T and O sites becomes smaller for icosahedral subsurface than for either bulk material or the f.c.c. subsurface. The results indicate that the icosahedral surface is more favored for H atom to adsorp than f.c.c. surface, the icosahedral surface increases the migration barriers of H atom from the surface to the subsurface.