Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-29T09:24:52.007Z Has data issue: false hasContentIssue false

Hydrogen and Hydrogen-Related Defects in CVD Diamond

Published online by Cambridge University Press:  10 February 2011

K. M. McNamara Rutledge*
Affiliation:
Department of Chemical Engineering, Worcester Polytechnic Institute Worcester, MA, USA
Get access

Abstract

Hydrogen is a detrimental impurity in many chemical vapor deposited (CVD) materials, particularly those involved in electronic or optical applications. For example, active hydrogen defects have been observed in materials such as silicon, Si, gallium arsenide, GaAs, and diamond, C, thin films. Hydrogen and its related defects can be identified, quantified, and observed using magnetic resonance techniques. These techniques allow a unique quantitative, non-destructive view of hydrogen in the solid-state. Nuclear magnetic resonance (NMR) is used to study hydrogenated defects directly, while electron paramagnetic resonance (EPR) is used to observe hydrogen associated with paramagnetic defects. These observations can enhance our understanding of the effects of hydrogen incorporation on the properties of such materials.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

VIII. References

1. Rutledge, K.M. McNamara and Gleason, K.K., Chem. Vap. Deposition, 2(2), 37 (1996).Google Scholar
2. Henrichs, P.M., Cofield, M.L., Young, R.H. and Hewitt, J.M., J. Magn. Reson., 58, 8594 (1984).Google Scholar
3. McNamara, K.M., Williams, B.E., Gleason, K.K. and Scruggs, B.E., J. Appl. Phys., 1994, 76, 2466.Google Scholar
4. McNamara, K.M., Gleason, K.K., and Butler, J., and Vestyck, D.J., Diamond and Related Materials, 1992,1, 11451155.Google Scholar
5. Abragham, A., The Principals of Nuclear Magnetism, Oxford University Press, NY (1983).Google Scholar
6. Levy, D.H.and Gleason, K.K., J. Phys. Chem., 31, 81258131 (1992).Google Scholar
7. Lock, H., Wind, R.A, Maciel, G.E., and Johnson, C.E., J. Chem. Phys., 99, 33633373 (1993).Google Scholar
8. McNamara, K.M., Levy, D.H., Gleason, K.K. and Robinson, C.J., 1992, Appl. Phys. Letts., 60, 580582.Google Scholar
9. van Vleck, J. H., Phys. Rev., 74, 1168 (1948).Google Scholar
10. Loubser, J.H.N. and van Wvk., J.A., Rev. Prog. Phys., 41, 12011248 (1978).Google Scholar
11. Watanabe, I. and Sugata, K., Jap. J. Appl. Phys., 27, 18081811 (1988).Google Scholar
12. Fabisiak, K., Maar-Stumm, M., and Blank, E., Diamond and Related Materials, 2, 722727 (1993).Google Scholar
13. Fanciulli, M. and Moustakas, T.D., Phys. Rev. B, 48, 1498214988 (1993).Google Scholar
14. Holder, S.L., Rowan, I.G., Krebs, J.J., Appl. Phys. Lett., 64, 1091 (1994).Google Scholar
15. Hoinkis, M., Weber, E. R., Landslrass, M.I., Plano, M.A., Han, S., and Karris, D.R., Appl. Phys. Lett., 59 1870 (1991).Google Scholar
16. Portis, A.M., Phys. Rev., 91, 1071 (1953).Google Scholar
17. Trammell, G.T., Zeldes, H., and Livington, R., Phys. Rev., 110, 630 (1958).Google Scholar
18. Zhang, W., Zhang, F., Wu, Q. and Chen, G., Materials Letters, 15, 292297 (1992).Google Scholar
19. Erchak, D.P., Ulyashin, A.G., Glefand, R.B., Penian, N.M., Zaitsev, A.M., Varichenko, V.S., Efimov, V.G., and Stelmakh, V.F., Nuclear Instruments and Methods in Physics Research, B69, 271276 (1992).Google Scholar
20. Halliburton, L.E., Perlson, B.D., Weeks, R.A., Weil, J.A., and Wintersgill, M.C., Sol.St. Comm., 30, 575 (1979).Google Scholar
21. Zhou, X., Watkins, G.D. McNamara, Rutledge, K.M., Messmer, R.P., Chawala, S., Submitted to Phys. Rev., May, 1996.Google Scholar
22. McNamara, K.M. and Gleason, K.K., Chem. of Materials, 1994, 6, 3943.Google Scholar
23. Pruski, M., Lang, D.P., Hwang, S.-J., Jia, H., and Shinar, J., Phys. Rev. B, 1994, 49, 1063510642.Google Scholar
24. McNamara, K.M., Gleason, K.K., and Robinson, C.J., J. Vac. Sci. Technol. A, 1992, 10, 31433148.Google Scholar
25. McNamara, K.M., Scruggs, B.E. and Gleason, K.K., J. Appl. Phvs., 1995, 77, 14591462.Google Scholar
26. Watkins, G.D., and Corbett, J.W., Phys. Rev., 134, A1359 (1964).Google Scholar
27. Elkin, E.L., and Watkins, G.D., Phys Rev., 174, 881 (1968).Google Scholar
28. Watkins, G.D., and Corbett, J.W., Phys. Rev., 138, A543 (1965).Google Scholar