Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-27T02:11:48.678Z Has data issue: false hasContentIssue false

Hydrogen adsorbed in ab initio computationally simulated nanoporous carbon. An energetics study

Published online by Cambridge University Press:  01 February 2011

R. M. Valladares
Affiliation:
[email protected], Facultad de Ciencias, Universidad Nacional Autonoma de Mexico, Apartado Postal 70-542, Ciudad Universitaria,, Mexico D.F., 04510, Mexico
Alexander Valladares
Affiliation:
[email protected], Facultad de Ciencias, Universidad Nacional Autonoma de Mexico, Apartado Postal 70-542,, Ciudad Universitaria, Mexico D.F., 04510, Mexico
A. G. Calles
Affiliation:
[email protected], Facultad de Ciencias, Universidad Nacional Autonoma de Mexico, Apartado Postal 70-542, Ciudad Universitaria, Mexico D.F., 04510, Mexico
Ariel A. Valladares
Affiliation:
[email protected], Instituto de Investigaciones en Materiales, Universidad Nacional Autonoma de Mexico, Apartado Postal 70-360, Ciudad Universitaria, Mexico D.F., 04510, Mexico
Get access

Abstract

Nanoporous carbon has been considered an interesting and potentially useful material for storing hydrogen. Using nanoporous carbon periodic supercells with 216 atoms and 50 % porosity, constructed with a novel ab initio approach devised by us, the dangling bonds of the carbon atoms were first saturated with hydrogen, then relaxed and its total energy calculated with and without hydrogen. Next the same number of hydrogen atoms, in molecular form, was randomly placed within the pore of the pure carbon supercell, then the sample relaxed, and finally its total energy calculated, also with and without hydrogens. From these results the average energy per hydrogen atom is obtained for both cases. For the molecular hydrogen sample the binding energy found per hydrogen atom is 343.89 meV, which compares favourably with values reported in the literature, 300-400 meV/molecule.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Cabria, I., López, M.J. and Alonso, J.A., Carbon 45 (2007) 2649.Google Scholar
[2] Panella, B., Hirscher, M., Roth, S., Carbon 43 (2005) 2209.Google Scholar
[3] Terrés, E. et al. Chem. Phys. Lett. 403 (2005) 363.Google Scholar
[4] Gogotsi, Y. et al. J. Am. Chem. Soc. 127 (2005) 16006.Google Scholar
[5] Yushin, G. et al. Adv. Func. Mater. 16 (2006) 2288.Google Scholar
[6] Jordà-Beneyto, M. et al. Carbon, 45 (2007), 293.Google Scholar
[7] Corma, A. et al. Nature 443 (2006) 842.10.1038/nature05238Google Scholar
[8] Valladares, A., in: V International Workshop on Advanced Materials, México-Korea, IPICYT, San Luis Potosí, SLP, México, January 24–26, 2005.Google Scholar
[9] Loustau, Emilye R. L., Estrada, Rubén, Valladares, Ariel A., J. Non-Cryst. Solids 352 (2006) 1332.Google Scholar
[10] Computer modeling of nanoporous materials: An ab initio novel approach for silicon and carbon, Valladares, Ariel A., Valladares, Alexander and Valladares, R. M., Accepted for publication, MRS Proceedings Symposium QQ, MRS, Fall Meeting, 2006.Google Scholar
[11] The energetics of hydrogen adsorbed in nanoporous silicon. An ab initio simulational study, Valladares, Ariel A. Valladares, Alexander, Valladares, R. M., and Calles, A. G.. Accepted for publication, MRS Proceedings Symposium ZZ, MRS, Fall Meeting, 2006.Google Scholar
[12] Li, J. et al. J. Chem. Phys. 119 (2003) 2376.10.1063/1.1582831Google Scholar
[13] Patchkovskii, S. et al. Proc. Natl. Acad. Sci. 102 (2005) 10439.10.1073/pnas.0501030102Google Scholar
[14] Rzepka, M., Lamp, P., Casa-Lillo, M.A. de la, J. Phys. Chem. B 102 (1998)10894.Google Scholar
[15] Wang, Q., Johnson, J. K., J. Chem. Phys. 110 (1999) 577.Google Scholar
[16] Alvarez, F., Díaz, C.C, Valladares, Ariel A. and Valladares, R. M., Phys. Rev. B 65 (2002) 113108.Google Scholar
[17] FASTSTRUCTURE_SIMANN, Users Guide, Release 4.0.0, San Diego, Molecular Simulations, Inc., September 1996.Google Scholar
[18] DISCOVER, Users Guide, Release 96.0/4.0.0, San Diego, Molecular Simulations, Inc., September 1996.Google Scholar
[19] Huheey, J. E., Keiter, E. A., Keiter, R. L., Inorganic Chemistry. Principles of Structure and Reactivity, HarperCollins College Publishers, Fourth edition, New York, 1993, A25.Google Scholar