Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-25T15:54:30.688Z Has data issue: false hasContentIssue false

Hydration of Biological Macromolecules: From Small Solutes to Proteins and Nucleic Acids

Published online by Cambridge University Press:  10 February 2011

Shekhar Garde
Affiliation:
Theoretical Biology and Biophysics T-10, MS K710, Los Alamos National Laboratory, Los Alamos, NM 87545 Center for Molecular and Engineering Thermodynamics, Department of Chemical Engineering, University of Delaware, Newark, DE 19716
Gerhard Hummer
Affiliation:
Theoretical Biology and Biophysics T-10, MS K710, Los Alamos National Laboratory, Los Alamos, NM 87545
Michael E. Paulaitis
Affiliation:
Center for Molecular and Engineering Thermodynamics, Department of Chemical Engineering, University of Delaware, Newark, DE 19716 Department of Chemical Engineering, Johns Hopkins University, Baltimore, MD 21218.
Angel E. Garcia
Affiliation:
Theoretical Biology and Biophysics T-10, MS K710, Los Alamos National Laboratory, Los Alamos, NM 87545
Get access

Abstract

We present a method that uses two- and three-particle correlation functions between solute atoms and water molecules to approximate the density profile of water surrounding biomolecules. The method is based on a potential of mean force expansion and uses X-ray crystallography, NMR, or modeling structural input information on the biomolecule. For small hydrophobic solutes, we have calculated entropies of hydration using the predicted water densities that are in good agreement with experimental results. We have also predicted the hydration of the catabolite activator protein-DNA complex. The method is extremely efficient and makes possible the study of hydration of large biomolecules within CPU minutes.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Rupley, J. A. and Careri, G., Adv. Protein. Chem., 41, 37, (1991).Google Scholar
[2] Paulaitis, M. E., Garde, S., and Ashbaugh, H. S., Curr. Opin. Coll. Int. Sci., 1, 376, (1996).Google Scholar
[3] Savage, H. and Wlodawer, A., Meth. Enzymol., 127, 162, (1986).Google Scholar
[4] Otting, G., Liepinsh, E., and Wüthrich, K., Science, 254, 974, (1991).Google Scholar
[5] Westhof, E., Annu. Rev. Biophys. Biophys. Chem., 17, 125, (1988).Google Scholar
[6] Zhang, X-J. and Matthews, B. W., Protein Sci. 3, 1031, 1994.Google Scholar
[7] Brooks, C. L III and Karplus, M., Meth. Enzymol., bf 127, 369, (1986).Google Scholar
[8] Soumpasis, D. M., in Computation of Biomolecular Structures, edited by Soumpasis, D. M. and Jovin, T. M. (Springer, Berlin, 1993) p. 223.Google Scholar
[9] Hummer, G. and Soumpasis, D. M., Phys. Rev. E., 49, 591, (1994);Google Scholar
Hummer, G. and Soumpasis, D. M., Phys. Rev. E, 50, 5085, (1994).Google Scholar
[10] Hummer, G. and García, A. E., Prot. Struct. Funct. Gen., (1996), in press.Google Scholar
[11] Hummer, G., García, A. E., and Soumpasis, D. M., Faraday Discuss., 103, (1996), in press.Google Scholar
[12] Hummer, G., Garcia, A. E., and Soumpasis, D. M., Biophys. J., 68, 1639, (1995).Google Scholar
[13] Ashbaugh, H. S. and Paulaitis, M. E., J. Phys. Chem., 100, (1996).Google Scholar
[14] Garde, S., Hummer, G., Garcia, A. E., Pratt, L. R., and Paulaitis, M. E., Phys. Rev. E., 53, R4310, (1996).Google Scholar
[15] Garde, S., Hummer, G., and Paulaitis, M. E., Faraday Discuss., 103, (1996), in press.Google Scholar
[16] Lazaridis, T. and Paulaitis, M. E., J. Phys. Chem., 96, 3847, (1992);Google Scholar
Lazaridis, T. and Paulaitis, M. E., J. Phys. Chem., 98, 635, (1994).Google Scholar
[17] Paulaitis, M. E., Ashbaugh, H. S., and Garde, S., Biophys. Chem., 51, 349, (1994).Google Scholar
[18] Berendsen, H. J. C., Postma, J. P. M., van Gunsteren, W. F., and Hermans, J., in Intermolecular Forces: Proceedings of the 14th Jerusalem Symposium on Quantum Chemistry and Biochemistry, edited by Pullman, B., (Reidel Dordrecht, The Nether-lands), p. 331, (1981).Google Scholar
[19] Jorgensen, W. L. and Severance, D. L., J. Am. Chem. Soc, 112, 4768, (1990).Google Scholar
[20] Boshford, J. L. and Hárman, J. G., Microbiol. Review, 56, 100, (1992).Google Scholar
[21] Schultz, S., Shields, G., and Steitz, T., Science, 253, 1001, (1991).Google Scholar
[22] Parkinson, G., Wilson, C., Gunasekera, A., Ebright, Y. W., Ebright, R. H., and Berman, H. M., J. Mol. Biol. 260, 395, (1996).Google Scholar
[23] Ebright, R. H., Mol. Microbiol., 8, 797, (1993).Google Scholar
[24] Luisi, B. F., Xu, W. X., Otinowski, Z., Freedman, L.P., Yamamoto, K. R., and Sigler, P. B., Nature, 352, 495, (1991).Google Scholar
[25] Gunasekera, A., Ebright, Y. W., and Ebright, R. H., J. Biol. Chem., 21, 14713, (1992).Google Scholar
[26] Bhat, T. N., Bentley, G. A., Boulot, G., Green, M. I., Tello, D., Dall'Acqua, W., Souchon, H., Schwartz, F. P., Mariuzza, R. A., and Poljak, R. A., Proc. Nat'l. Acad. Sci. USA., 91, 1089, (1994).Google Scholar