Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-27T01:47:23.928Z Has data issue: false hasContentIssue false

Hybrid Materials Made by Polymerization of the Nanobuilding Blocks {(BuSn)12O14,(OH)6,}2+(AAMPS−)2 (AAMPS = 2-acrylamido-2-methyl-l-propanesulfonate)

Published online by Cambridge University Press:  10 February 2011

F. Ribot
Affiliation:
Chimie de la Matière Condensée, Univ. P. et M. Curie / CNRS (UMR 7574). 4, place Jussieu (T54-E5). PARIS - FRANCE. [email protected]
C. Eychenne-Baron
Affiliation:
Chimie de la Matière Condensée, Univ. P. et M. Curie / CNRS (UMR 7574). 4, place Jussieu (T54-E5). PARIS - FRANCE. [email protected]
C. Sanchez
Affiliation:
Chimie de la Matière Condensée, Univ. P. et M. Curie / CNRS (UMR 7574). 4, place Jussieu (T54-E5). PARIS - FRANCE. [email protected]
Get access

Abstract

The reaction of {(BuSn)12014(OH)6}(OH)2 and 2-acrylamido-2-methyl-1-propanesulfonic acid yields bifunctional nanobuilding blocks, {(BuSn)12,014(OH)6)(AAMPS)2, which carry highly polymerizable acrylamido groups. In such species, the functionalization with polymerizable groups is achieved through electrostatic interaction; the charge compensating anions AAMPS− being located at both poles of the {(BuSn)12O14(OH)6}2+ macrocation. Free radical polymerization of these nanobuilding blocks in THF yields an insoluble material. Solid state 13C CP-MAS NMR of the insoluble fraction (∼70%) indicates that the polymerization of the acrylamido groups is complete. Solid state 119Sn MAS NMR shows that the oxo-hydroxo butyltin core of the nanobuilding blocks is fully preserved in the final material.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 (a) Novak, B.M., Adv. Mater. 5, 422 (1993). (b) U. Schubert, N. Hùising, A. Lorenz, Chem. Mater. 7, 2010 (1995). (c) D.A. Loy, K.J. Shea, Chem. Rev. 95, 1431 (1995). (d) P. Judenstein, C. Sanchez, J. Mater. Chem. 6, 511 (1996). (e) C. Sanchez, F. Ribot, New J. Chem. 18, 1007 (1994). (f) U. Schubert, J. Chem. Soc., Dalton Trans. 3343 (1996). (g) Hybrid Organic-Inorganic Composites, (Eds.: J.E. Mark, C.Y.C. Lee, P.A. Bianconi), American Chemical Society, Washington, DC (1995). (h) Better Ceramics Through Chemistry VII : Organic/Inorganic Hybrid Materials, (Eds.: B.K. Coltrain, C. Sanchez, D.W. Schaefer, G.L. Wilkes), Mater. Res. Soc. Symp. Proc. 435, Materials Research Society, Pittsburgh, PA (1996). (i) Y. Chujo, T. Saegusa, Adv. Polym. Sci. 100, 11 (1992). (j) A. Morikawa, Y. Iyoku, M. Kakimoto, Y. Imai J. Mater. Chem. 2, 679 (1992).10.1002/adma.19930050603Google Scholar
2 Brinker, C.J., Scherrer, G.W., Sol-Gel Science, The Physics and Chemistry of Sol-Gel Processing, Academic Press, San-Diego, CA (1990).Google Scholar
3 (a) Ribot, F., Sanchez, C., Comm. Inorg. Chem. (1998) in press. (b) J.D. Lichtenhan, Comm. Inorg. Chem. 17, 115 (1195). (c) A. Sellinger, R.M. Laine, Chem. Mater. 8, 1592 (1996). (d) D. Hoebbel; K. Endres, T. Reinert, H. Schmidt, Mater. Res Soc. Symp. Proc. 346, 863 (1994). (e) P. Judeinstein, Chem. Mater. 4, 4 (1992).Google Scholar
4 Holmes, R.R., Acc. Chem. Res. 22, 190 (1989).10.1021/ar00161a005Google Scholar
5 (a) Ribot, F., Banse, F., Sanchez, C., Mater. Res. Soc. Symp. Proc. 346, 121 (1994). (b) B. Jousseaume, M. Lahcini, M.C. Rascle, F. Ribot, C. Sanchez, Organometallics 14, 685 (1995). (b) P. Jaumier, B. Jousseaume, M. Lahcini, F. Ribot, C. Sanchez, Chem. Commun. 369 (1998).10.1557/PROC-346-121Google Scholar
6 (a) Ribot, F., Banse, F., Diter, F., Sanchez, C., New J. Chem. 19, 1145 (1995). (b) F. Ribot, F. Banse, C. Sanchez, M. Lahcini, B. Jousseaume J. Sol-Gel Sci. Tech. 8, 529 (1997). (c) F. Ribot, C. Eychenne-Baron, C. Sanchez, Mater. Res. Soc. Symp. Proc. 435, 43 (1996). (d) L. Angiolini, D. Caretti, C. Carlini, R. De Vito, F.T. Niesel, E. Salatelli, F. Ribot, C. Sanchez, J. Inorg. Organomet. Polym. (1998) in press.Google Scholar
7 Dakternieks, D., Zhu, H., Tiekink, E.R.T., Colton, R.J., J. Organomet. Chem. 476, 33 (1994).10.1016/0022-328X(94)84137-3Google Scholar
8 Banse, F., Ribot, F., Tolédano, P., Maquet, J., Sanchez, C., Inorg. Chem. 34, 6371 (1995).10.1021/ic00129a023Google Scholar
9 Eychenne-Baron, C., Ribot, F., Steunou, N., Sanchez, C., Robert, F., Biesemans, M., Willem, R., Organomet. (submitted).Google Scholar
10 Eychenne-Baron, C., Ribot, F., Sanchez, C., J. Organomet. Chem. (1998) in press.Google Scholar
11 Reuter, H., Sebald, A., Z. Naturforsch. 48b, 195 (1992).Google Scholar
12 Massiot, D., Thiele, H. and Germanus, A., Bruker Rep. 140, 43 (1994).Google Scholar
13 Herzfeld, J., Berger, A.E., J. Chem. Phys. 73, 6021 (1980).10.1063/1.440136Google Scholar
14 Harris, R.K., Lawrence, S.E., Oh, S.W., J. Mol. Struct. 347, 309 (1995).10.1016/0022-2860(95)08553-8Google Scholar
15 Ribot, F., Sanchez, C., Willem, R., Martins, J.C., Biesemans, M., Inorg. Chem. 37, 911 (1998).10.1021/ic971189rGoogle Scholar