Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-17T13:18:00.210Z Has data issue: false hasContentIssue false

Hybrid Materials : Intricate Structures Guiding Complex Dynamics

Published online by Cambridge University Press:  10 February 2011

P. Judeinstein*
Affiliation:
Laboratoire de Chimie Structurale Organique (URA 1384), Université Paris Sud, Bat. 410, 91405 Orsay - France. e-mail: [email protected]
Get access

Abstract

The structure and certain properties of Class {I} and Class {II} nanocomposites based on silica-poly(ethylene)oxide blends are described herein. The detailed structure of the silica framework of Class {I} materials is depicted by combining 29Si NMR and X-Ray diffractometry, while the properties of the polymer phase are obtained from 13C NMR and thermal analysis (DSC). These experiments demonstrate the significant influence of the catalyst on the silica structure (compositional and positional disordering). Moreover, the dynamic properties of the polymer phase are greatly effected by the silica morphologies (silica surface area and degree of phase interpenetration). Class {II} materials were also studied. They have rubbery properties and can be used as a matrix to absorb large quantities of solvents. Hence, combining uniaxial anisotropy (through unidirectionnal strain) with deuterated molecules enabled the study of these materials by quadrupolar NMR. This technique is very sensitive to the local anisotropy of the samples used and leads to a better understanding of supramolecular interactions between probe and host polymer.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

(1) a) Sanchez, C., Ribot, F., New J. Chem. 18, (1994), 1007. b) P. Judeinstein, C. Sanchez, J. Mater. Chem., 6, (1996), 511.Google Scholar
(2) See, for example a) inBetter Ceramics Through Chemistry VI”, Eds Cheetham, A. K., Brinker, C. J., McCartney, M. L., Mat. Res. Soc. Symp. Proc., Vol. 346, (1994). b) in “Better Ceramics Through Chemistry VII”, Eds A. K. Cheetham, C. J. Brinker, M. L. McCartney, Mat. Res. Soc. Symp. Proc., Vol. 435, (1996). c) in “Hybrid Organic-Inorganic Materials”, Eds. C. Sanchez and F. Ribot, New J. Chem., 18, 1994. d) in “Hybrid Organic-Inorganic Composites”, Eds. J. E. Mark, C. Y.-C. Lee, P. A. Bianconi, ACS Symp. Ser., Washington DC, 585, (1995).Google Scholar
(3) Livage, J., Henry, M., Sanchez, C., Progr. Solid State Chem., 18, (1988), 259.Google Scholar
(4) a) Novak, B. M., Adv. Mat., 5, (1993), 422. b) C. Sanchez, F. Ribot, New J. Chem., 18, (1994), 1007.10.1002/adma.19930050603Google Scholar
(5) Lesot, P., Chapuis, S., Bayle, J.P., Rault, J., Lafontaine, E., Campero, A., Judeinstein, P., J. Mater. Chem., 8, (1998), 147.Google Scholar
(6) Brik, M. E., Bayle, J. P., Titman, J., Judeinstein, P., J. Polym. Sci., Part B : Polym. Phys., 36, (1996), 2533.Google Scholar
(7) Laridjani, M., Lafontaine, E., Bayle, J.P., Judeinstein, P., J. Mater. Chem, submitted.Google Scholar
(8) Laridjani, M., Pouget, J. P., Scherr, E. M., MacDiarmid, A. G., Jozefowicz, M. E., Epstein, A. J., Macromolecules, (1992), 25, 4106.Google Scholar
(9) Ohsaki, H., Miura, K., Imai, A., Tada, M., Aegerter, M. A., J. Sol-Gel Sci. & Tech., (1994), 2, 245.10.1007/BF00486249Google Scholar
(10) Warren, B. E. Mozzi, R. L., Acta Cryst., (1966), 21, 459.Google Scholar
(11) Mozzi, R. L., Warren, B. E., J. Appl. Cryst., (1969), 2, 169.Google Scholar
(12) Henninger, E. H., Baschert, R. C., Heaton, L., J. Phys. Chem. Solids, (1967), 28, 423.Google Scholar
(13) Bell, R. J., Dean, P., Phil. Mag., (1972), 25, 1381.Google Scholar
(14) Engelhardt, G., in “High-Resolution Solid-State NMR of Silica and Zeolites”, Wiley (1987), p. 76.Google Scholar
(15) Liu, C. C., Maciel, G. E., J. Am. Chem. Soc., 118, (1996), 5103.Google Scholar
(16) a) inMolecular Dynamics in Restricted Geometries”, Klafter, J., Drake, J. M., Eds, J. Wiley & Sons, New York, (1989). b) in “Polymers at Interfaces”, Eds. G. J. Fleer, M. A. Cohen Stuart, T. Cosgrove, B. Vincent, Chapman & Hall, London (1993).Google Scholar
(17) Judeinstein, P., Oliveira, P. W., Krug, H., Schmidt, H., Chem. Phys. Lett., 220, (1994), 35 Google Scholar
(18) a) Ahmad, Z., Sarwar, M. I., Mark, J. E., J. Mater. Chem., 7, (1997), 259 b) I. A. David, G. W. Scherer, Chem. Mater., 7, (1995), 1957.Google Scholar
(19) a) Krevaleen, H. Van, in “Properties of Polymers”, Elsevier Eds, 1985.b) E. W. Hansen, M. Stöcker, R. Schmidt, J. Phys. Chem., 100, (1996), 2195.Google Scholar
(20) Judeinstein, P., Titman, J., Stamm, M., Schmidt, H., Chem. Mater., 6, (1994), 127.10.1021/cm00038a007Google Scholar
(21) Vögtle, F., inSupramolekulare Chemie, Eine Einführung”, Teubner, B. G. Ed., (1992), Stuttgart.Google Scholar
(22) Samulski, E. T., Polymer, 26, 177, (1985).10.1016/0032-3861(85)90027-8Google Scholar
(23) Emsley, J. W., Lindon, J. C., in “NMR spectroscopy Using Liquid Crystal Solvents”, Pergamon Press, Oxford, (1975).Google Scholar
(24) Dessolle, V., Lafontaine, E., Bayle, J. P., Judeinstein, P., Mat. Res.Soc. Symp. Proc., 435, (1996), 475.10.1557/PROC-435-475Google Scholar
(25) Deloche, B., Beltzung, M., Herz, J., J. Physique - lettres, 43, L763, (1982)Google Scholar
(26) Treolar, L. B., in “The Physics of Rubber Elasticity”, Clarendon Press, Oxford, (1975).Google Scholar
(27) Oliveira, P. W., Judeinstein, P., Krug, H., Schmidt, H., Adv. Mater for Optics and Electronics, 7, (1997), 123.Google Scholar
(28) Dahmouche, K., Souza, P. H. De, Bonagamba, T. J., Panepucci, H., Judeinstein, P., Pulcinelli, S. H., Santilli, C. V.., J. Sol-Gel Sci. and Technol., (1998), in press.Google Scholar
(29) Orel, B., Krasovec, U. Opara, Stangar, U. Lavrencic and Judeinstein, P., J. Sol-Gel Sci. and Technol., (1998), in press.Google Scholar