Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-28T22:57:52.821Z Has data issue: false hasContentIssue false

HTCVD growth of semi-insulating 4H-SiC crystals with low defect density

Published online by Cambridge University Press:  21 March 2011

A. Ellison
Affiliation:
Okmetic AB, Hans Meijers väg 2, 583 30 Linköping, Sweden
B. Magnusson
Affiliation:
Linköping University, Dept. of Physics and Meas. Technology, 581 83 Linköping, Sweden
C. Hemmingsson
Affiliation:
Linköping University, Dept. of Physics and Meas. Technology, 581 83 Linköping, Sweden
W. Magnusson
Affiliation:
Okmetic AB, Hans Meijers väg 2, 583 30 Linköping, Sweden
T. Iakimov
Affiliation:
Okmetic AB, Hans Meijers väg 2, 583 30 Linköping, Sweden
L. Storasta
Affiliation:
Linköping University, Dept. of Physics and Meas. Technology, 581 83 Linköping, Sweden
A. Henry
Affiliation:
Linköping University, Dept. of Physics and Meas. Technology, 581 83 Linköping, Sweden
N. Henelius
Affiliation:
Okmetic AB, Hans Meijers väg 2, 583 30 Linköping, Sweden
E. Janzén
Affiliation:
Okmetic AB, Hans Meijers väg 2, 583 30 Linköping, Sweden
Get access

Abstract

The development of a novel SiC crystal growth technique, generically described as High Temperature Chemical Vapor Deposition (HTCVD) is reviewed. The structural, optical and electrical properties of 4H-SiC semi-insulating substrates are investigated with the aim of providing optimal microwave device performances. In particular, alternative compensation mechanisms to vanadium doping in S.I substrates are investigated to eliminate substrate induced trapping effects. Carried out at temperatures above 2100°C, the HTCVD technique uses, as in CVD, gas precursors (silane and a hydrocarbon) as source materials. The growth process can be described as “Gas Fed Sublimation” and proceeds by the gas phase nucleation of Six-Cy clusters, followed by their sublimation into active species that are condensed on a seed. Crystals with diameters up to 45 mm have been obtained with growth rates of 0.6 mm/h. The use of specific process steps, such as in-situ seed surface preparation and micropipe closing are presented and high resistivity wafers with micropipe densities down to 10 cm−2 are demonstrated. 4H-SiC substrates prepared from undoped crystals (with vanadium concentration lower than 5×1014 cm−3) exhibit semi-insulating behavior with a room temperature resistivity of the order of 1010Ω?cm. Infrared absorption measurements show that two types of semi-insulating crystals can be grown, with a spectrum either dominated by the Si-vacancy, or by a previously unreported defect labeled UD-1. These two types of semi-insulating wafers are also differentiated by the temperature dependence of their resistivity, with activation energies of 0.85 and 1.4±0.1 eV, respectively, and by the stability of their resistivity upon an annealing at 1600°C. Initial MESFET devices processed on HTCVD grown substrates show better DC characteristics than devices processed on vanadium doped substrates.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Kordina, O., Hallin, C., Ellison, A., Bakin, A.S., Ivanov, I.G., Henry, A., Yakimova, R., Tuominen, M., Vehanen, A. and Janzén, E., Appl. Phys. Lett., 69(10) 1456 (1996).Google Scholar
2. Ellison, A., Zhang, J., Peterson, J., Henry, A., Wahab, Q., Bergman, J. P., Makarov, Y. N., Vorob'ev, A., Vehanen, A. and Janzén, E., Mat. Sci. Eng. B 61–62, 113 (1999).Google Scholar
3. PhD thesis, Diss. No. 510, Ellison, A., Linköping University, Linköping, Sweden (1999).Google Scholar
4. Vorob'ev, A.N., Karpov, S.Yu., Zhmakin, A.I., Lovtsus, A.A., Makarov, Yu. N. and Krishnan, A., J. of Cryst. Growth 211, 343 (2000).Google Scholar
5. Allendorf, M. D. and Klee, R.J., J. Electrochemical Soc. 138(3), 841 (1991).Google Scholar
6. Tairov, Yu. M. and Tsvetkov, V.F., J. of Cryst. Growth 52, 146 (1981).Google Scholar
7. Glass, R. C., Henshall, D., Tsvetkov, V. F. and Carter, C. H. Jr, phys. stat. sol. (b) 202, 149 (1997)Google Scholar
8. Augustine, G., Hobgood, D. McD., Balakrishna, V., Dunne, G. and Hopkins, R. H., phys. stat. sol. (b) 202, 137 (1997)Google Scholar
9. Yakimova, R., Tuominen, M., Bakin, A. S., Fornell, J.O., Vehanen, A. and Janzén, E., Inst. Phys. Conf. Ser. 142, 101 (1996)Google Scholar
10. Hofmann, D., Müller, M., Mat. Sc. and Eng. B 61–62, 29 (1999)Google Scholar
11. Kamata, I., Tsuchida, H., Jikomoto, T. and Izumi, K., Jpn. J. Appl. Phys. 39, 6496 (2000)Google Scholar
12. Balakrishna, V., Augustine, G. and Hopkins, R. H., Mat. Res. Soc. Symp. 572, 245 (1999)Google Scholar
13. Noblanc, O., Arnodo, C., Dua, C., Chartier, E. and Brylinksi, C., Mat. Sc. and Eng. B 61–62, 339 (1999)Google Scholar
14. Noblanc, O., Arnodo, C., Dua, C., Chartier, E. and Brylinski, C., Materials Science Forum 338–342, 1247 (2000)Google Scholar
15. Arai, M., Honda, H., Ogata, M., Sawazaki, H., Nakagawa, A. and Kitamura, M., Ext. Abstracts 1st Int. Workshop on Ultra-Low-Loss Power Device Technology, 91 (2000)Google Scholar
16. Binari, S. C., Kruppa, W., Dietrich, H. B., Kelner, G., Wickenden, A. E. and Freitas, J. A. Jr, Solid-State Electron. 41, 1549 (1997)Google Scholar
17. Khan, M. A., Shur, N. S., Chen, Q. C. and Kuznia, J. N., Electron. Lett. 30, 2175 (1994)Google Scholar
18. Barton, T. M. and Snowden, C. M., IEEE Trans. Electron. Dev. 37, 1409 (1990)Google Scholar
19. Horio, K. and Fuseya, Y., IEEE Electron Dev. 41, 1340 (1994)Google Scholar
20. Horio, K., Wakabayashi, A. and Yamada, T., IEEE Trans. Electron. Dev. 47, 617 (2000)Google Scholar
21. Sörman, E., Son, N. T., Chen, W. M., Kordina, O., Hallin, C. and Janzén, E., Phys. Rev. B 61, 2613 (2000)Google Scholar
22. Magnusson, B., Ellison, A., Son, N.T. and Janzén, E., these proc.Google Scholar
23. Itoh, H., Hayakawa, N., Nashiyama, I. and Sakuma, E., J. Appl. Phys., 66(9) 4529 (1989)Google Scholar
24. Forsberg, U., Linnarsson, M. K., Henry, A. and Janzén, E., these proc.Google Scholar
25. Noblanc, O., Morvan, E., Dua, C. and Brylinski, C., proc. of the ECSCRM 2000 conference, in press.Google Scholar