Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-28T23:04:44.805Z Has data issue: false hasContentIssue false

HRTEM/EELS Analysis, Structural Characterization and Sensor Performances of Hydrothermal Nano-TiO2

Published online by Cambridge University Press:  01 February 2011

Ana M. Ruiz
Affiliation:
Centro Nacional de Microelectrónica (IMB-CSIC), Campus UAB, 08193 Bellaterra, Spain
J. Arbiol
Affiliation:
EME, Department of Electronics, University of Barcelona, C/ Marti i Franques 1, Barcelona 08028, Spain
A. Cornet
Affiliation:
EME, Department of Electronics, University of Barcelona, C/ Marti i Franques 1, Barcelona 08028, Spain
K. Shimanoe
Affiliation:
Department of Materials Science, Kyushu University, Kasuga-shi, Fukuoka 816–8580, Japan
Joan R. Morante
Affiliation:
EME, Department of Electronics, University of Barcelona, C/ Marti i Franques 1, Barcelona 08028, Spain
N. Yamazoe
Affiliation:
Department of Materials Science, Kyushu University, Kasuga-shi, Fukuoka 816–8580, Japan
Get access

Abstract

Pure nanophased TiO2 with controlled microstructure and resistant to thermal induced grain growth has been prepared by hydrothermal treatments. The synthesized nano-TiO2 presents small size and well defined and faceted surface, as shown by Raman spectroscopy, XRD, EELS and HRTEM. Such performances are slightly changed with the posterior temperature treatments up to 700 °C, maintaining anatase phase structure and grain size about 20nm. The extent of stabilization depended on the pH of the treatment, being pH 2 more convenient for stabilizing the size, and pH 3 for the phase. HRTEM and EELS measurements showed the coexistence of rutile big particles (∼100 nm) with anatase small particles (∼40 nm) at pH 3 and calcination at 900°C. Thick-films of precipitated TiO2 and hydrothermally treated TiO2 were tested for the CO and the ethanol response. The hydrothermal treatment allowed obtaining stable sensitive films which exhibited enlarged sensor response and improved transients, specially in the case of the materials treated at pH 3.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Gurlo, A., Ivanovskaya, M., Bârsan, N., Schweizer-Berberich, M., Weimar, U., Göpel, W., Diéguez, A.. Sens. Actuators B 44 (1997) 327333.Google Scholar
2. Baik, N.S., Sakai, G., Miura, N., Yamazoe, N.. Sens. Actuators B 63 (2000) 7479.Google Scholar
3. Korotcenkov, G., Brinzari, V., Di Battista, M., Schwank, J., Vasiliev, A.. Sens. Actuators B 77 (2001) 244252.Google Scholar
4. Pola, J., Pokorná, D., Bohácek, J., Bastl, Z., Ouchi, A.. J. Analyt. Appl. Pyrolysis 71 (2004) 739746.Google Scholar
5. Akbar, S.A., Younkman, L.B.. J. Electrochem. Soc. 144 (1997) 17501753.Google Scholar
6. Qin, D., Chang, W., Zhou, J., Chen, Y.. Thermochimica Acta 236 (1994) 205216.Google Scholar
7. Augustynsky, J.. Electroch. Acta 38 (1) (1993) 4346.Google Scholar
8. Hu, Y., Tsai, H.L., Huang, C.L.. J. Europ. Ceram. Soc. 23 (2003) 691696.Google Scholar
9. Kavan, L., Gratzel, M., Gilbert, S.E., Klemenz, C., Scheel, H.J.. J. Am. Chem. Soc. 118 (1996) 67166723.Google Scholar
10. Kim, K. S., Barteau, M. A.. Langmuir 6 (1990) 14851488.Google Scholar
11. Tanner, R.E., Liang, Y., Altman, E. I.. Surf. Sci. 506 (2002) 251271.Google Scholar
12. Inagaki, M., Nakazawa, Y., Hirano, M., Kobayashi, Y., Toyoda, M.. Int. J. Inorg. Mater. 3 (2001) 809811.Google Scholar
13. Chhabra, V., Pillai, V., Mishra, B.K., Morrone, A., Shah, D.O.. Langmuir 11 (1995) 33073311.Google Scholar
14. Lal, M., Chhabra, V., Ayyub, P., Maitra, A.. J. Mater. Res. 13 (1998) 12491254.Google Scholar
15. Campbell, L.K., Na, B.K., Ko, E.I.. Chem. Mater. 4 (1992) 13291333.Google Scholar
16. Ruiz, A., Sakai, G., Cornet, A., Shimanoe, K., Morante, J. R., Yamazoe, N.. Cr-doped TiO2 gas sensor for exhaust NO2 monitoring. Sens. Actuators B 93 (2003) 509518.Google Scholar
17. Ruiz, A., Dezanneau, G., Arbiol, J., Cornet, A., Morante, J.R.. Thin Solid Films 436 (2003) 9094.Google Scholar
18. Ruiz, A., Cornet, A., Morante, J. R.. Sens. Actuators B 100 (2004) 256260.Google Scholar
19. Kolen'ko, Y.V., Burukhin, A.A., Churagulov, B.R., Oleynikov, N.N.. Mater. Lett. 57 (2003) 11241129.Google Scholar
20. Zhang, Y.X., Li, G.H., Jin, Y.X., Zhang, Y., Zhang, J., Zhang, L.D.. Chem. Phys. Lett. 365 (2002) 300304.Google Scholar
21. Rammal, A., Brisach, F., Henry, M.. C. R. Chimie 5 (2002) 5966.Google Scholar
22. Ruiz, A., Sakai, G., Cornet, A., Shimanoe, K., Morante, J.R., Yamazoe, N.. Sens. Actuators B 103 (2004) 312317.Google Scholar
23. Wu, Z.Y., Ouvrand, G., Gressier, P. and Natoli, C.R.. Phys. Rev. B 55 (1997) 1038210391.Google Scholar