Hostname: page-component-848d4c4894-8kt4b Total loading time: 0 Render date: 2024-07-01T02:17:37.475Z Has data issue: false hasContentIssue false

HRTEM Study of Oxide Nanoparticles in 16Cr-4Al-2W-0.3Ti-0.3Y2O3 ODS Steel

Published online by Cambridge University Press:  31 January 2011

Luke Hsiung
Affiliation:
[email protected], Lawrence Livermore National Laboratory, Physical and Life Sciences, Livermore, California, United States
Mike Fluss
Affiliation:
[email protected], United States
Mark Wall
Affiliation:
[email protected], Lawrence Livermore National Laboratory, Physical and Life Sciences, Livermore, California, United States
Akihiko Kimura
Affiliation:
[email protected], Kyoto University, Kyoto, Japan
Get access

Abstract

Crystal and interfacial structures of oxide nanoparticles in 16Cr-4Al-2W-0.3Ti-0.3Y2O3 ODS ferritic steel have been examined using high-resolution transmission electron microscopy (HRTEM) techniques. Oxide nanoparticles with a complex-oxide core and an amorphous shell were frequently observed. The crystal structure of complex-oxide core is identified to be mainly monoclinic Y4Al2O9 (YAM) oxide compound. Orientation relationships between the oxide and matrix are found to be dependent on the particle size. Large particles (> 20 nm) tend to be incoherent and have a spherical shape, whereas small particles (< 10 nm) tend to be coherent or semi-coherent and have a faceted interface. The observations of partially amorphous nanoparticles lead us to propose three-stage mechanisms in order to rationalize the formation of oxide nanoparticles containing core/shell structures in as-fabricated ODS steels.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Ehrlich, K. Phil. Trans. R. Soc. Lond. A 357(1999) 595.Google Scholar
2. Ukai, S. Fujiwara, M. J. Nucl. Mater. 307-311(2002) 749.Google Scholar
3. Kasada, R. Toda, N. Yutani, K. Cho, H.S. Kishimoto, H. Kimura, A. J. Nucl. Mater. 341(2005) 103.Google Scholar
4. Okuda, T. Fujiwara, M. J. Mater. Sci. Lett. 14(1995) 1600.Google Scholar
5. Kimura, Y. Takaki, S. Suejima, S. Uemori, R. Tamehiro, H. ISIJ International, 39 (2)(1999) 176.Google Scholar
6. Sakasegawa, H. Tamura, M. Ohtsuka, S. Ukai, S. Tanigawa, H. Kohyama, A. Fujiwara, M. Alloys, J. & Compounds 452(2008) 2.Google Scholar
7. Marquis, E. A. Appl. Phys. Lett. 93(2008) 181904.Google Scholar
8. Klimiankou, M. Lindau, R. Möslang, A., J. Nucl. Mater. 386-388(2009) 553.Google Scholar
9. Yutani, K. Kishimoto, H. Kasada, R. Kimura, A. J. Nucl. Mater. 367-370(2007) 423.Google Scholar
10. Uki, S. Nishida, T. Okada, H. Okuda, T. Fujiwara, M. Asabe, K. J. Nucl. Sci. Technol. 34 (3)(1997) 256.Google Scholar
11. Christensen, A. Nørlund and Hazell, R.G. Acta Chemica Scandinavica 45(1991) 226.Google Scholar
12. Ching, W.Y. Xu, Y.N. Physical Review B 59 (20)(1999) 12815.Google Scholar
13. Castro, V. de, Leguey, T. Monge, M.A. Munoz, A. Pareja, R. Amador, D.R. Torralba, J.M. Victoria, M. J. Nucl. Mater. 322(2003) 228.Google Scholar