Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-25T15:48:09.931Z Has data issue: false hasContentIssue false

HR-TEM Studies of FePt Nanoparticles by Exit Wave Reconstruction

Published online by Cambridge University Press:  21 March 2011

Daniela Sudfeld
Affiliation:
Fachbereich Physik and Center for Nanointegration, Universität Duisburg-Essen, Lotharstr. 1, Duisburg, 47048, Germany
Olga Dmitrieva
Affiliation:
Fachbereich Physik and Center for Nanointegration, Universität Duisburg-Essen, Lotharstr. 1, Duisburg, 47048, Germany
Nina Friedenberger
Affiliation:
Fachbereich Physik and Center for Nanointegration, Universität Duisburg-Essen, Lotharstr. 1, Duisburg, 47048, Germany
Guenter Dumpich
Affiliation:
Fachbereich Physik and Center for Nanointegration, Universität Duisburg-Essen, Lotharstr. 1, Duisburg, 47048, Germany
Michael Farle
Affiliation:
Fachbereich Physik and Center for Nanointegration, Universität Duisburg-Essen, Lotharstr. 1, Duisburg, 47048, Germany
ChengYu Song
Affiliation:
National Center for Electron Microscopy, Ernest Orlando Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, CA, 94720
Christian Kisielowski
Affiliation:
National Center for Electron Microscopy, Ernest Orlando Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, CA, 94720
Markus E. Gruner
Affiliation:
Fachbereich Physik and Center for Nanointegration, Universität Duisburg-Essen, Lotharstr. 1, Duisburg, 47048, Germany
Peter Entel
Affiliation:
Fachbereich Physik and Center for Nanointegration, Universität Duisburg-Essen, Lotharstr. 1, Duisburg, 47048, Germany
Get access

Abstract

FePt nanoparticles are promising materials for high-density magnetic data storage media [1] and bio-medical applications such as drug-targeting and hyperthermia [2]. To understand their magnetic properties [3] it is essential to get insights into the lattice structure of isolated nanoparticles which influence the magnetic behavior.

Typically, lattice fringes are observed with high-resolution transmission electron microscopy (HR-TEM). In this case delocalization effects disturb imaging of the lattice structure in particular if 2 to 6 nm small nanoparticles are involved. Therefore, FePt nanocrystals were investigated by reconstructing amplitude and phase of the scattered electron wave from a focal series of HRTEM images, which can produce delocalization free and direct images of the crystal structure [4]. The formation of 5-fold twinned structures of 3 to 7 nm face-centered cubic FePt nanocrystals is investigated that were grown from a colloidal solution [1]. The results are compared with abinitio density functional (DFT) calculations of FePt particles with a diameter of larger than 2 nm. Image simulations were performed with the Accelrys Cerius2 software package (Version 4.6). Good agreement between the ab-initio calculations and the experimental data is found.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Sun, S., Murray, C. B., Weller, D., Folks, L., Moser, A.; Science 287 1989 (2000).Google Scholar
2. Salgueiriño-Maceira, V., Liz-Marzan, L. M., and M., Farle; Langmuir 20, 6946, (2004).Google Scholar
3. Antoniak, C., Lindner, J., Spasova, M., Sudfeld, D., Acet, M., Farle, M., Fauth, K., Wiedwald, U., Boyen, H.-G., Ziemann, P., Wilhelm, F., Rogalev, A., Sun, S.; Phys. Rev. Lett. 97, No. 11, 117201 (2006).Google Scholar
4. Kisielowski, C.,Hetherington, C.J.D., Wang, Y.C., Kilaas, R., O'Keefe, M.A., Thust, A.; Ultramicr. 89 243 (2001).Google Scholar
5. Dmitrieva, O., Acet, M., Dumpich, G., Kästner, J., Antoniak, C., Farle, M., and Fauth, K.; J. Phys. D: Appl. Phys. 39, 4741 (2006).Google Scholar
6. Kisielowski, C., Nelson, E.C., Song, C., Kilaas, R., Thust, A., Microscopy and Microanalysis, Suppl. 2, 6, 2000, 16Google Scholar
7. O'Keefe, M.A., Hetherington, C.J.D., Wang, Y.C., Nelson, E.C., Turner, J.H., Kisielowski, C., Malm, J.-O., Mueller, R., Ringnalda, J., Pam, M., Thust, A., Ultramicr. 89 (2001) 4: 215–241Google Scholar
8. Thust, A., Coene, W.M.J., Op de Beeck, M., Van Dyck, D., Ultramicr. 64, 211, (1996)Google Scholar
9. Coene, W.M.J., Thust, A., Op de Beeck, M., Van Dyck, D., Ultramicr. 64, 109, (1996)Google Scholar
10. Kresse, G. and Furthm¸ller, J., Phys. Rev. B 54, 11169 (1996).Google Scholar
11. Kresse, G. and Joubert, D., Phys. Rev. B 59, 1758 (1999).Google Scholar
12. Perdew, J. P., Burke, K., and Wang, Y., Phys. Rev. B 54, 16533 (1996).Google Scholar
13. Spence, J. C. H., High-Resolution Electron Microscopy, Oxford Science Publ. (2003).Google Scholar