Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-27T01:58:50.047Z Has data issue: false hasContentIssue false

Hrem Study of Heteroeprtaxial Interfaces in the TiO2/Al2O3 System

Published online by Cambridge University Press:  25 February 2011

Y. Gao
Affiliation:
Materials Science Division, Argonne National Laboratory Argonne, IL 60439
K. L. Merkle
Affiliation:
Materials Science Division, Argonne National Laboratory Argonne, IL 60439
H. L. M. Chang
Affiliation:
Materials Science Division, Argonne National Laboratory Argonne, IL 60439
T. J. Zhang
Affiliation:
Materials Science Division, Argonne National Laboratory Argonne, IL 60439
D. J. Lam
Affiliation:
Materials Science Division, Argonne National Laboratory Argonne, IL 60439
Get access

Abstract

TiO2 thin films were grown epitaxially on (1120) sapphire (α-Al2O3) at 800 °C by the MOCVD method. The TiO2 films and TiO2/Al2O3 interfaces were characterized by TEM and HREM. The observations indicate that the TiO2 films are single crystalline and have the rutile structure. A majority of the films has the epitaxial orientation relationship between the TiO2 rutile films (R) and the α-Al2O3 substrates (S): (101)[010]R||(1120)[0001]S, while the epitaxial relationship of (100)[010]R||(1120)[0001]s has also been observed for one film. HREM studies show that the (100) film was grown on an off-cut substrate, vicinal to (1120). Detailed atomic structures of the interfaces will be presented and discussed in terms of the growth mechanism and misfit dislocation structure.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Atomic Scale Structure of Interface”, edited by Bringans, R. D., Feenstra, R. M. and Gibson, J. M. (Mat. Res. Soc. Symp. Proc. 159, Pittsburgh, PA, 1989).Google Scholar
2.Layered Structures: Heteroepitaxy, Superlattices, Strain, and Metastability”, edited by Dodson, B. W., Schowalter, L. J., Cunningham, J. E. and Pollak, F. H. (Mat. Res. Soc. Symp. Proc. 160, Pittsburgh, PA, 1989).Google Scholar
3.Epitaxial Heterostructures”, edited by Shaw, D. W., Bean, J. C., Keramidas, V. G. and Peercy, P. S. (Mat. Res. Soc. Symp. Proc. 198, Pittsburgh, PA, 1990).Google Scholar
4. Wowchak, A. M., Kuznia, J. N. and Cohen, P. I., J. Vac. Sci. Technol. B 7, 733, (1989).Google Scholar
5. Chambers, S. A., J. Vac. Sci. Technol. B 7, 737, (1989).CrossRefGoogle Scholar
6. Bauer, E. G., Dodson, B. W., Ehrlich, D. J., Feldman, L. C., Flynn, C. P., Geis, M. W., Harbison, J. P., Matyi, R. J., Peercy, P. S., Petroff, P. M., Phillips, J. M., Stringfellow, G. B. and Zangwill, A., J. Mater. Res., 5, 852, (1990).CrossRefGoogle Scholar
7. Hyde, B. G. and Anderson, S., “Inorganic Crystal Structures” (John Wiley & Sons, New York, 1989).Google Scholar
8. Chang, H. L. M., Parker, J. C., You, H., Xu, J. J. and Lam, D. J., in “Chemical Vapor Deposition of Refractory Metals and Ceramics”, edited by Besmann, T. M. and Gallois, B. M. (Mat. Res. Soc. Symp. Proc. 168, Pittsburgh, PA), 343 (1989).Google Scholar
9. Gao, Y., Merkle, K. L., Chang, H. L. M., Zhang, T. J., Lam, D. J., submitted to Phil. Mag. A.Google Scholar