Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-20T09:26:50.923Z Has data issue: false hasContentIssue false

Hrem and CBED Studies of Polarity of Nitride Layers with Prismatic Defects Grown Over SiC

Published online by Cambridge University Press:  10 February 2011

P. Vermaut
Affiliation:
Laboratoire d'Etudes et de Recherches sur les Matériaux, Unité associée CNRS 6004, Institut des Sciences de la Matière et du Rayonnement, 6 Blvd Maréchal Juin, 14050 Caen Cedex, France. ([email protected])
P. Ruterana
Affiliation:
Laboratoire d'Etudes et de Recherches sur les Matériaux, Unité associée CNRS 6004, Institut des Sciences de la Matière et du Rayonnement, 6 Blvd Maréchal Juin, 14050 Caen Cedex, France. ([email protected])
G. Nouet
Affiliation:
Laboratoire d'Etudes et de Recherches sur les Matériaux, Unité associée CNRS 6004, Institut des Sciences de la Matière et du Rayonnement, 6 Blvd Maréchal Juin, 14050 Caen Cedex, France. ([email protected])
A. Salvador
Affiliation:
University of Illinois-Urbana, Coordinated Science Laboratory, Urbana, Illinois, IL61801, USA ([email protected])
H. Morkog
Affiliation:
University of Illinois-Urbana, Coordinated Science Laboratory, Urbana, Illinois, IL61801, USA ([email protected])
Get access

Abstract

The polarity of GaN films and their AlN buffer layer grown on (0001)si 6H-SiC by an electron cyclotron resonance plasma enhanced molecular beam epitaxy has been investigated by convergent beam electron diffraction (CBED) and high resolution electron microscopy (HREM). The experimental results are in good agreement with the simulations and allow to determine that the free surfaces of the GaN and AlN layers are Ga and Al-terminated respectively. Moreover, (1210) prismatic planar defects observed in the AlN layers have been identified as stacking faults and observations in different areas of the specimens have shown that the layers are unipolar.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Morkoç, H., Strite, S., Gao, G. B., Lin, M. E., Sverdlov, B. and Burns, M., J. Appl. Phys., 76, 1363 (1994).Google Scholar
2. Lester, S.D., Ponce, F.A., Craford, M.G. and Steigerwald, D.A., Appl. phys. Lett., 66, 1249 (1995).Google Scholar
3. Sasaki, T. and Matsuoka, T., J. Appl. Phys., 64, 4531 (1988).Google Scholar
4. Ponce, F.A., O'Keefe, M.A. and Nelson, E.C., Phil. Mag. A, 74, 777 (1996).Google Scholar
5. Lin, M.E., Strite, S., Agarwal, A., Salvador, A., Zhou, G.L., Teraguchi, N., Rockett, A. and Morkoç, H., Appl. Phys. Lett. 62, 702 (1993).Google Scholar
6. Stadelmann, P. A., Ultramicroscopy, 21, 131 (1987).Google Scholar
7. Pirouz, P. and Yang, J.W., Uttramicroscopy, 51, 189 (1993).Google Scholar
8. Spence, J.C.H., and Zuo, J.M. in Electron Microdiffraction, (Plenum Press, New York, 1992).Google Scholar
9. Von Müench, W., and Pfaffeneder, I., J. Electrochem. Soc, 122, 642 (1975).Google Scholar
10. Glaisher, R.W., Spargo, A.E.C. and Smith, D.J., Ultramicroscopy, 27, 117 (1989).Google Scholar
Tanaka, U.S., Kern, R.S. and Davis, R.F., Appl. Phys. Lett. 66, 37 (1994).Google Scholar
12. Vermaut, P., Ruterana, P., Nouet, G., Salvador, A. and Morkoç, H. in III-Nitride, SiC and Diamond Materials for Electronic Devices, edited by Gaskill, D.K., Brandt, C.D. and Nemanich, R.J. (Mater. Res. Soc. Proc. 423, Pittsburg, PA, 1996) p. 551.Google Scholar
13. Drum, C.M., Phil. Mag. A 11, 313 (1965).Google Scholar
14. Rouvière, J.L., Arlery, M., Bourret, A., Niebuhr, R. and Bachem, K., in Proceeding of the IXth Conference on Microscopy of Semiconducting Materials. Inst. of Phys. Conf. Series No 146, 285 (1995).Google Scholar
15. Vermaut, P., Ruterana, P., Nouet, G. and Morkoç, H., Phil. Mag A, 75, 239 (1997).Google Scholar