Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-19T04:28:13.922Z Has data issue: false hasContentIssue false

How Unique are the Microstructure and the Electrical Properties of Nanocrystalline Ceramics?

Published online by Cambridge University Press:  10 February 2011

P. Knauth
Affiliation:
Laboratory EDIFIS (UMR CNRS 6518), Faculty of Sciences of Marseille-St Jérôme, F-13397 Marseille Cedex 20, France, [email protected]
H. L. Tuller
Affiliation:
Massachusetts Institute of Technology, Department of Materials Science and Engineering, Crystal Physics and Electroceramics Laboratory, Cambridge, MA 02139, USA
Get access

Abstract

A literature overview on microstructural and electrical properties of nanocrystalline ceramics is given. Space charge effects in nanosystems, especially thin-films and colloidal particles, are discussed from a theoretical point of view. Some common features of nanocrystalline ceramics are pointed out: nanoparticles present few extended lattice imperfections and the densification process begins at distinctly lower temperatures than that of coarse-grained ceramics. A significant decrease of grain boundary resistance occurs due to grain-size dependent dopant segregation, which leads also to an important increase of the apparent solubility of dopants in nanocrystalline materials. A number of studies confirm the theoretically expected reduction of the point defect formation enthalpy at interface sites, giving rise to significantly larger nonstoichiometry and electronic conductivity of nanocrystalline materials. Increased ionic conductivity has been found only in a limited number of cases, some of which remain controversial.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Ying, J. Y., Sun, T., J. Electroceramics, 1, 219 (1997).Google Scholar
2. Levy, B., J. Electroceramics, 1, 239 (1997).Google Scholar
3. Tuller, H. L., J. Electroceramics, 1, 211 (1997).Google Scholar
4. Chiang, Y.-M., J. Electroceramics, 1, 205 (1997) and references cited therein.Google Scholar
5. Gleiter, H., Prog. Mater. Sci., 33, 223 (1989).Google Scholar
6. Siegel, R. W., Physics Today, 64 (1993).Google Scholar
7. Maier, J., Prog. Solid State Chem., 23, 171 (1995).Google Scholar
8. Grätzel, M., in Electrochemistry in Colloids and Dispersions, Mackay, R. A., Texter, J., Ed., VCH, New York (1992).Google Scholar
9. Maier, J., Solid State Ionics, 23, 59 (1987).Google Scholar
10. Orton, J. W., Goldsmith, B. J., Chapman, J. A., Powell, M. J., J. Appl. Phys., 53, 1602 (1982).Google Scholar
11. Verwey, J. W., Overbeek, J. Th. G., Theory of the Stability of Lyophobic Colloids, Elsevier, New York (1948).Google Scholar
12. Albery, W. J., Bartlett, P. N., J. Electrochem. Soc., 131, 315 (1984).Google Scholar
13. Goossens, A., J. Electrochem. Soc., 143, L131 (1996).Google Scholar
14. Kosacki, I., Anderson, H. U., Sensors and Actuators B, in press.Google Scholar
15. Kosacki, I., Gorman, B., Anderson, H. U., Sensors and Actuators B, 48 (1998) 263.Google Scholar
16. Kosacki, I., Anderson, H., Mat. Res. Soc. Symp. Proc., Vol. 453, 537 (1997).Google Scholar
17. Alivisatos, A. P., MRS Bull., 23, 18 (1998).Google Scholar
18. Kortuim, G., Electrochemistry, VCH, Weinheim (1966).Google Scholar
19. Guillou, D., Nistor, L. C., Fuess, H., Hahn, H., Nanostructured Mater., 8, 545 (1997).Google Scholar
20. Michel, D., Mazerolles, L., Gaffet, E., Mater. Sci. Forum, 235–238, 601 (1997).Google Scholar
21. Davis, S. R., Chadwick, A. V., Wright, J. D., J. Phys. Chem. B, 101, 9901 (1997).Google Scholar
22. Zhao, Y. H., Zhang, K., Lu, K., Phys. Rev. B, 56,14322 (1997).Google Scholar
23. Erb, U., Palumbo, G., Szpunar, B., Aust, K. T., Nanostructured Mater., 9, 261 (1997).Google Scholar
24. , Zhou, Phillips, R. J., Switzer, J. A., J. Am. Ceram. Soc., 78, 981 (1995).Google Scholar
25. Hsiao, G. S., Anderson, M. G., Gorer, S., Harris, D., Penner, R. M., J. Am. Chem. Soc., 119, 1439 (1997).Google Scholar
26. Erley, G., Gorer, S., Penner, R. M., Proc. MRS Fall Meeting, Session C5–60 (1998).Google Scholar
27. Mukherjee, M., Datta, A., Chakravorty, D., J. Mater. Res., 12, 2507 (1997).Google Scholar
28. Lu, K., Sun, N. X., Phil. Mag. Lett., 75, 389 (1997).Google Scholar
29. Terwilliger, C. D., Chiang, Y.-M., J. Am. Ceram. Soc., 78, 2045 (1995).Google Scholar
30. Herrmann, J.-M., Disdier, J., Fernandez, A., Jimenez, V. M., Sanchez-Lopez, J. C., Nanostructured Mater., 8, 675 (1997).Google Scholar
31. Knauth, P., Tuller, H. L., J. Appl. Phys., in press.Google Scholar
32. Puin, W., Rodewald, S., Ramlau, R., Heitjans, P., Maier, J., Solid State Ionics, in press.Google Scholar
33. Chiang, Y.-M., Lavik, E. B., Kosacki, I., Tuller, H. L., Ying, J. Y., J. Electroceramics, 1, 7 (1997).Google Scholar
34. Terwilliger, C. D., Chiang, Y.-M., Acta Mater., 43, 319 (1995).Google Scholar
35. Porat, O., Tuller, H. L., Lavik, E. B., Chiang, Y.-M., in Nanophase and Nanocomposite Materials II, Komarneni, S., Parker, J., Wollenberger, H., Eds., Materials Research Society, Pittsburgh, 1997, p. 99.Google Scholar
36. Tschöpe, A., Birringer, R., Nanostructured Mater., 9, 591 (1997).Google Scholar
37. Knauth, P., Schwitzgebel, G., Tschöpe, A., Villain, S., J. Solid State Chem., in press.Google Scholar
38. Knauth, P., Tuller, H. L., in “Electrochemistry of Glass and Ceramics”, Sundaram, S. K., Bickford, D. F., Hornyak, E. J., Ed., Ceramic Transactions, Vol. 92, American Ceramic Society, Columbus, 1999, in press.Google Scholar
39. Knauth, P., Tuller, H. L., J. Europ. Ceram. Soc., in press.Google Scholar
40. Lavik, E. B., Chiang, Y.-M., Mat. Res. Soc. Symp. Proc., Vol. 457 (1997).Google Scholar
41. Chiang, Y.-M., Lavik, E. B., Blom, D. A., Nanostructured Mater., 9, 633 (1997).Google Scholar
42. Jiang, S., Schulze, W. A., V. Amarakoon, R. W., Stangle, G. C., J. Mater. Res., 12, 2374 (1997).Google Scholar
43. Mondal, P., H, Hahn, Ber. Bunsenges. Phys. Chem., 101, 1765 (1997).Google Scholar