No CrossRef data available.
Published online by Cambridge University Press: 17 March 2011
We have developed a model to account for the effects of hydrogen and voids on the structural stability of silicon thin films. The model is based on both experiments and theory. First, hydrogenated amorphous silicon films (a-Si:H) with various hydrogen contents were obtained by Plasma Enhanced Chemical Vapor Deposition. A linear correlation between hydrogen content and void fraction was observed. By tuning the deposition conditions, polymorphous silicon films with hydrogen contents up to 15%, very small void fractions (0.5%) and excellent electronic properties were also obtained. Density Functional Theory (DFT) calculations were performed to determine the formation energy for four types of silicon tetrahedra of the form Si-SinH4−n (n=1, 2, 3, 4). In our model, these tetrahedral units are considered as the building blocks of the silicon thin films. Considering a homogeneous distribution of hydrogen in the solid, the proportion of the different SiSinH4−n tetrahedra as a function of the hydrogen concentration was calculated. Then, the formation energy of hydrogenated amorphous silicon (a-Si:H) was calculated as a function of the hydrogen content and for various porosities. The model predicts that hydrogen incorporation does render the a-Si:H structure unstable for different hydrogen contents depending on the void fraction. Our results show that polymorphous silicon films with hydrogen concentrations up to 15% can be as stable as standard amorphous silicon with 2% hydrogen content, provided that the presence of hydrogen is not associated with the incorporation of porosity in the film.