Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-28T23:37:07.850Z Has data issue: false hasContentIssue false

How do different surface modification strategies affect the properties of MnO nanoparticles for biomedical applications? Comparison of PEGylated and SiO2-coated MnO nanoparticles

Published online by Cambridge University Press:  03 August 2011

Thomas D. Schladt
Affiliation:
IBM Almaden Research Center, San Jose, CA 95120-6099, U.S.A. Institut für Anorganische und Analytische Chemie, Johannes-Gutenberg Universität, Duesbergweg 10-14, D-55099 Mainz, Germany Graduate School Materials Science in Mainz, Staudinger Weg 9, D-55128 Mainz, Germay
Kerstin Koll
Affiliation:
Institut für Anorganische und Analytische Chemie, Johannes-Gutenberg Universität, Duesbergweg 10-14, D-55099 Mainz, Germany Graduate School Materials Science in Mainz, Staudinger Weg 9, D-55128 Mainz, Germay
Heiko Bauer
Affiliation:
Institut für Anorganische und Analytische Chemie, Johannes-Gutenberg Universität, Duesbergweg 10-14, D-55099 Mainz, Germany
Stefan Weber
Affiliation:
Institut für medizinische Physik, Klinik und Poliklinik für diagnostische und interventionelle Radiologie, Universitätsklinikum Langenbeckstrasse 1, D-55131 Mainz, Germany
Laura M. Schreiber
Affiliation:
Institut für medizinische Physik, Klinik und Poliklinik für diagnostische und interventionelle Radiologie, Universitätsklinikum Langenbeckstrasse 1, D-55131 Mainz, Germany
Wolfgang Tremel
Affiliation:
Institut für Anorganische und Analytische Chemie, Johannes-Gutenberg Universität, Duesbergweg 10-14, D-55099 Mainz, Germany
Get access

Abstract

MnO nanoparticles (NPs) were surface functionalized by two different approaches, (1) using a dopamine-poly(ethylene glycol) (PEG) (DA-PEG) ligand and (2) by encapsulation within a thin silica shell applying a novel approach. Both MnO@DA-PEG and MnO@SiO2 NPs exhibited excellent long-term stability in physiological solutions. In addition, the cytotoxic potential of both materials was comparatively low. Furthermore, owing to the magnetic properties of MnO NPs, both MnO@DA-PEG and MnO@SiO2 lead to a shortening of the longitudinal relaxation time T1 in MRI. In comparison to the PEGylated MnO NPs, the presence of a thin silica shell led to a greater stability of the MnO core itself by preventing excessive Mn ion leaching into aqueous solution.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Schladt, T. D., Graf, T., Tremel, W., Chem. Mater. 21, 3183 (2009)10.1021/cm900663tGoogle Scholar
2. Na, H.B., Lee, J.H., An, K., Park, Y.I, Park, M., Lee, I.S., Nam, D.H., Kim, S.T., Kim, S.H., Kim, S.W., Lim, K.H., Kim, K.S., Kim, S.O. and Hyeon, T., Angew. Chem. Int. Ed. 46, 5397 (2007)10.1002/anie.200604775Google Scholar
3. Gilad, A.A., WQalczak, P., McMahon, M.T., Na, H.B., Lee, J.H., An, K., Hyeon, T., van Zijl, P.C.M. and Bulte, J.W.M., Magn. Reson. Med. 60, 1 (2008)10.1002/mrm.21622Google Scholar
4. Petros, R.A. and DeSimone, J.M., Nature Reviews 9, 615 (2010)Google Scholar
5. Jun, Y-W., Lee, J-H. and Cheon, J., Angew. Chem. Int. Ed. 41, 5122 (2008)10.1002/anie.200701674Google Scholar
6. Duncan, R., Nature Reviews 6, 688 (2006)Google Scholar
7. Ahrén, M., Selegaed, L., Klasson, A., Söderlind, F., Abrikossova, N., Skolund, C., Bengtsson, T., Engström, M., Käll, P.O. and Uvdal, K., Langmuir 26, 5753 (2010)10.1021/la903566yGoogle Scholar
8. Yallapu, M.M., Foy, S.P., Jain, T.K. and Labhasetwar, V., Pharm. Res. 27, 2283 (2010)10.1007/s11095-010-0260-1Google Scholar
9. Schladt, T.D., Schneider, K., Shukoor, M.I., Natalio, F., Bauer, H., Tahir, M.N., Weber, S., Schreiber, L.M., Schröder, H.C., Müller, W.E.G. and Tremel, W., J. Mater. Chem. 20, 8297 (2010)10.1039/c0jm01465fGoogle Scholar
10. Chan, Y., Zimmer, J., Stroh, M., Steckel, J., Jain, R. and Bawendi, M., Adv. Mater. 16, 2092 (2004)10.1002/adma.200400237Google Scholar
11. Yang, H., Zhuang, M.Y., Hu, H., Du, X., Zhang, C., Shi, X., Wu, H. and Yang, S., Adv, Funct, Mater. 20, 1733 (2010)10.1002/adfm.200902445Google Scholar
12. Schladt, T.D., Koll, K., Prüfer, S., Bauer, H., Natalio, F., Dumele, O., Raidoo, R., Weber, S., Schreiber, L.M., Radsak, M.P., Schild, H. and Tremel, W., Adv. Funct. Mater. (submitted)Google Scholar
13. Lewinski, N., Colvin, V., Drezek, R., Small, 4, 26 (2008)10.1002/smll.200700595Google Scholar